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Order by disorder in classical kagome antiferromagnets with chiral interactions
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The Heisenberg antiferromagnet on the kagome lattice is an archetypal instance of how large ground-state
degeneracies arise, and how they may get resolved by thermal and quantum fluctuations. Augmenting the
Heisenberg model by chiral spin interactions has proved to be of particular interest in the discovery of
certain chiral quantum spin liquids. Here we consider the classical variant of this chiral kagome model and
find that it exhibits, similar to the classical Heisenberg antiferromagnet, a remarkably large and structured
ground-state manifold, which combines continuous and discrete degrees of freedom. This allows for a rich
set of order-by-disorder phenomena. Degeneracy lifting occurs in a highly selective way, choosing already at
the harmonic level specific triaxial states, which however retain an emergent Z2 degree of freedom (absent
in the conventional Heisenberg model). We also study the competition of entropic and energetic ground-state
selection as the model interpolates between the purely chiral and Heisenberg cases. For this mixed model, we
find a “proximate ordered-by-disorder” finite-temperature regime where fluctuations overcome the energetic
ground-state preference of the perturbation. Finally, a semiclassical route to a spin liquid is provided by quantum
order by disorder in the purely chiral models, where the aforementioned Z2 degrees of freedom are elevated to
the role of an emergent gauge field.
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I. INTRODUCTION

In many-body physics, the formation and splitting of acci-
dental degeneracies is a recurring motif in the emergence of
unconventional states of matter. Examples include the frac-
tional quantum Hall states arising from interaction effects in
partially filled (and hugely degenerate) Landau levels [1] or
the plethora of correlated states observed in moiré materials
[2–4] where, e.g., the twisting to a magic angle leads, in the
noninteracting limit, to a flat, degenerate band [5]. The phe-
nomenology of residual degeneracies, which are not protected
by any symmetries, has also been broadly studied in the field
of frustrated magnetism. Here it is the competition of interac-
tions, often induced by the geometry of the underlying lattice,
that hinders the formation of conventional magnetic order and
keeps the magnetic moments fluctuating down to the lowest
temperatures [6], orders of magnitude below the Curie-Weiss
scale set by the bare magnetic interactions [7,8]. This opens
the stage for residual effects to instigate the macroscopic state
of matter by lifting the degeneracy of fluctuating states. One
of the most intriguing scenarios here is the phenomenon of
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order by disorder [9] where the fluctuations themselves in-
duce magnetic order by effectively lowering the free energy
for a selection of states. Thermal order-by-disorder transi-
tions to low-temperature magnetic order have been discussed
for Heisenberg antiferromagnets for various lattice geome-
tries incompatible with the formation of a simple Néel state
such as the face-centered cubic (fcc) [10,11] or pyrochlore
[12,13]. The spinel materials whose magnetism is described
by competing nearest and next-nearest-neighbor couplings on
the diamond lattice [14] have been particularly scrutinized
[15–17] in light of two-stage magnetic ordering in MnSc2S4

[18] where the upper transition was argued to arise from ther-
mal order-by-disorder physics—experimental verification of
which came in recent neutron scattering experiments reveal-
ing the formation of a degenerate spiral spin liquid manifold in
the precursor of this transition [19]. In going one step further,
the breaking of classical symmetries by quantum fluctuations
is known as quantum order by disorder. This phenomenon has
been extensively studied, with the pyrochlore antiferromagnet
again being a principal example [20,21]. An important case
in point for the experimental observation of quantum order by
disorder are the inelastic neutron scattering measurements of
the pyrochlore compound Er2Ti2O7 [22–24].

In two spatial dimensions, it is the Heisenberg antifer-
romagnet on the kagome lattice that has attracted the most
attention for its subtle ordering mechanisms [25–31]. Its lat-
tice geometry inherently combines stringent local constraints
resulting from its short cycles (triangles) with the overall un-
derconstrained nature due to the corner-sharing arrangement
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of these elementary triangles. The quantum ground state of
the spin-1/2 kagome Heisenberg antiferromagnet (KHAFM)
remains subject of ongoing debate, with the formation of
valence bond order contending with the emergence of differ-
ent spin liquid states [32,33]—pointing to a broader scenario
where a special point is located elsewhere in the phase dia-
gram of the KHAFM, i.e., a largely degenerate state of matter
that allows for the formation of a plethora of different states
when perturbed with different interactions [34–36].

In this paper, we investigate the role of chiral three-spin
interactions in the context of classical kagome antiferromag-
nets. Our motivation to do so arises from the observation
that for the quantum model such three-spin interactions give
rise to highly unusual states of matter: A uniform choice of
chirality leads to the formation of a chiral spin liquid [37,38],
i.e., a bosonic analog of a fractional quantum Hall state as
first conceptualized by Kalmeyer and Laughlin [39], while a
staggered pattern of chiralities leads a gapless spin liquid [40]
with a spinon Fermi surface, the bosonic analog of a metal
[41,42].

It turns out that the (semi)classical limit of these models is
very interesting as well: Akin to their quantum counterparts
chiral kagome antiferromagnets exhibit residual degenera-
cies, which in the classical systems, however, are lifted in
thermal order-by-disorder transitions (observable in Monte
Carlo simulations at ultralow temperatures). We also dis-
cuss interpolations to the conventional KHAFM, whose
order-by-disorder phenomenology has long been established
[25–27,30,31] and in comparison to the chiral model is less
restrictive in its selection of ground states.

This paper is devoted to a detailed and comprehensive
study of the kagome antiferromagnet with chiral interactions.
It is organised as follows. We first introduce the model. We
then construct its ground states across the range of parameters
defined by tuning the chirality from uniform to staggered, with
a variable amount of admixture of the conventional Heisen-
berg term in the Hamiltonian. The next two sections present
the effects of thermal and quantum fluctuations, respectively,
in this family of models, followed by a concluding discussion.

We find that the purely chiral models display the richest
order-by-disorder phenomenology. This is largely on account
of their large and elaborate ground-state structure. Fluctua-
tions can select a subset of these ground states, which at
harmonic order remain exactly degenerate.

Superficially, this selection resembles the selection of
coplanar “Potts” states in the pure Heisenberg antiferromagnet
[25], but the selected chiral ground states in addition exhibit
an emergent Z2 degree of freedom. We present an effective
theory for this sector of the theory, finding it well described
by a gaugelike theory of the type pioneered by Henley. This
analysis culminates in the proposal of the possibility of a
semiclassical route to a topological spin liquid of the toric
code type upon addition of quantum dynamics.

II. THE MODEL

We consider classical spins residing on the sites of a 2D
kagome lattice. The spins are 3D vectors of of unit length,
|Si| = 1, subject to both two- and three-body interactions. The

Hamiltonian is given by

H =(1 − |λ|)
∑
〈i, j〉

Si · S j

− |λ|
∑

i, j,k∈�
χi jk − λ

∑
i, j,k∈�

χi jk, (1)

where χi jk is the scalar spin chirality defined as

χi jk ≡ Si · (S j × Sk ) (2)

with (i, j, k) labeling spins counterclockwise around elemen-
tary lattice triangles. The first term in the Hamiltonian (1)
describes the usual Heisenberg interaction between nearest
neighbors whereas the second and third terms describe the
chiral interaction between triads of spins belonging to upright
and upside-down triangles respectively. The relative strength
of these terms is parametrized by the dimensionless value λ.
We are interested in the parameter range λ ∈ [−1, 1]. Special
cases of note are λ = 0, the kagome Heisenberg antiferromag-
net (KHAFM), and λ = ±1, the uniform and staggered chiral
models. The Heisenberg interaction is antiferromagnetic ev-
erywhere inside the interval.

As a side note, we should remark that the Hamiltonian
defined by Eq. (1) is dimensionless; its overall energy scale
is set to unity. In what follows we also use kB = 1 and h̄ = 1
and, consequently, temperature and frequency are also dimen-
sionless throughout this paper.

III. GROUND-STATE MANIFOLDS

A. The Heisenberg antiferromagnet, λ = 0

Before turning our attention to the ground states of the
general model, let us revisit the ground-state manifold of the
classical KHAFM. Its Hamiltonian can be written as

HKHAFM = 1

2

∑
�,�

S2
� + const, (3)

where the sum is performed over all elementary lattice trian-
gles with S� being the vector sum of the triangle’s three spins.
Consequently, all ground states of the KHAFM satisfy the
constraint that S� vanishes on each kagome triangle, which
is achieved by arranging all spins to form 120◦ angles with
their neighbors. For each lattice triangle, such a 120◦ arrange-
ment defines a plane in which its three spins lie. However,
there is no requirement that these planes coincide for different
triangles. In other words, the ground-state requirement is not
sufficient to fully constrain the configuration of spins (up to
some global rotation). Consequently, the KHAFM has a large
and continuous classical ground-state degeneracy, which can
be quantified by the dimension D of its ground-state manifold.

Many configurations of the ground-state manifold are con-
nected by means of weathervane modes, the energetically
neutral rotation of entire chains of spins of two alternating
directions around the axis defined by the spins neighboring the
chain. Crucially, a generic ground state may be obtained from
a coplanar ground state (i.e., a state in which all spins lie in
the same plane) through an appropriate sequence of weather-
vane modes [25,27,43]. Up to the global rotational symmetry,
all coplanar states have spins pointing in one of three
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FIG. 1. Two most prominent three-color states. (a) The q = 0
state and (b) the

√
3 ×√

3 state. For the KHAFM the colors corre-
spond the three possible directions of spins in a coplanar 120◦ state.
For the purely chiral model, A, B, and C here label three possible
orthogonal axes, x, y, and z; with the spins aligning or antialigning
themselves with these axes in order to form a triad of vectors with
the desired chirality/handedness on each triangle.

possible directions and hence can be labeled by three col-
ors. All distinct coplanar states are therefore in one-to-one
correspondence to three-colorings of a dual honeycomb
graph [28,44] whose vertices correspond to the centers of
kagome triangles. Their number is given by Zthree-color =
1.20872...Nvertices = 1.20872...2N/3, where N is the total num-
ber of spins on the kagome lattice; the weathervane modes
connecting different coplanar configurations correspond to
exchanging two colors along any two-color loop (or a chain
terminating at the boundary). Two prominent three-color
states play an important role in what follows: the q = 0 and√

3 ×√
3 states shown in Fig. 1.

As will be discussed later, the coplanar states play a special
role in the classical KHAFM since they are selected by the
so-called order-by-disorder mechanism [25].

B. The chiral models, λ = ±1

Scalar spin chirality χi jk is extremized when the spins are
orthogonal, and its sign is determined by the handedness of
the coordinate system they define. Therefore, the ground-state
condition of the uniform chiral model is that the spins of all
triangles form a right-handed orthogonal basis. The ground-
state condition of the staggered chiral model is similar, but
the spins on down-pointing triangles must instead form a left-
handed orthogonal basis.

The special role played by the coplanar ground states in the
KHAFM is now assumed by a subset of chiral ground states
we call triaxial. Triaxial ground states are defined as those
in which all spins are collinear with one of the three direc-
tions, which define the same orthogonal basis across the entire
lattice. Like the coplanar ground states of the KHAFM, each
triaxial ground state may be mapped to a three-color state on
the kagome lattice. However, even after a global assignment of
the three axes, this is not a one-to-one map due to the existence
of an additional Z2 local degree of freedom that indicates
whether a given spin is aligned or antialigned with a particular
axis. Therefore, in addition to a three-color assignment, the
Z2 variables must be specified and, consequently, a triaxial
ground state of the chiral model is, up to a global O(3) rotation
of all spins, uniquely characterized Z3 × Z2 local variables.

In what follows, we will borrow the terms used to describe
the coplanar ground states of KHAFM such as the q = 0 and√

3 ×√
3 states to refer strictly to the Z3, i.e., three-color ar-

rangements (see Fig. 1). Due to the existence of an additional
Z2 degree of freedom, neither q = 0 nor

√
3 ×√

3 specify the
actual spatial periodicity of a triaxial ground state.

Two observations are in order: (i) for any valid Z3 (i.e.,
three-color) configuration, in the case of open boundary con-
ditions there are many distinct triaxial ground states that are
different from one another by their Z2 variable assignments
and (ii) the number of valid Z2 assignments is exactly the
same for all triaxial states in both uniform and staggered
chiral models. The latter statement implies that there is no
statistical bias favoring some three-color configurations over
others as a consequence on their additional Z2 multiplicity.
These properties can be demonstrated by considering a finite
kagome lattice of a rectangular shape. The specific shape
plays no substantive role in the argument but makes the
degeneracy count straightforward. Let the bottom row of the
lattice consist of the upside-down triangles as is the case in
Fig. 1. Given any three-color/triaxial arrangement, make any
assignment of the Z2 degrees of freedom for its bottom spins.
There are 2L� such possible assignments, with L� being a
number of upside-down triangles in the bottom row. Now
assign the Z2 degree of freedom for the next row of spins,
which form the bases of these triangles. There are 2L� choices
once again since the sign of one spin per base of a triangle can
be chosen freely whereas the second spin (the last remaining
spin of the triangle) is completely fixed by the triangle’s
chirality. The next row of spins—the vertices of the upright
triangles—is completely fixed but for the row after that
there are 2L� choices once again (one Z2 degree of freedom
per base). Proceeding this way until all sign choices have
been made, we end up with (2L� )h�+1 = 2L� × 2N� possible
assignments regardless of the initial three-color arrangement
or the signs of the individual triangles’ chiralities. (Here
h� is the number of rows of upside-down triangles while
N� = L� × h� is the total number of such triangles, which is
the same as the number of hexagons N or kagome unit cells.)
The prefactor of 2L� is an artefact of the boundary condition
and does not lead to any additional extensive degeneracy;
in the thermodynamic limit the degeneracy of triaxial states
associated with the Z2 degrees of freedom is 2 per unit cell
of the kagome lattice.

For completeness, we shall present another proof of this
statement as it helps elucidate the role of boundary conditions.
Starting from any three-color state, indiscriminately assign
the Z2 degrees of freedom for each site. Take red to ±x,
green to ±y, blue to ±z selecting the sign according the
their Z2 assignments. (For simplicity, we could chose all of
them to be positive—there is nothing special about this Z2

assignment.) Given the indiscriminate nature of the assign-
ments some triangles will have the wrong handedness. Such
defects can be “healed” by connecting pairs of wrong-handed
triangles by a line that does not have sharp corners (i.e., its
adjacent segments never make a 60◦ angle) and flipping all
spins situated on that line. Requiring no sharp corners implies
that the line passes through two sites of each intervening
triangle, resulting in a flip of two of the triangle’s spins and no
change in its handedness. Meantime only one spin is flipped
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at the two ends of the line connecting defect triangles, which
changes their handedness thus healing them. If there are an
odd number of defects, the final defect may be healed by
flipping a chain, which terminates at the boundary in the case
of open boundary conditions. On a compact manifold (e.g., in
the case of periodic boundary conditions), an odd number of
defects leave a remaining defect, which may not be healed and
can be associated with a Z2 monopole inside the surface.

This healing procedure is also a cue to the Z2 multi-
plicity count. Specifically, two distinct triaxial ground states
with the same parent three-color state can be obtained from
one another by flipping all spins along a loop containing no
sharp corners. Triangles touching these loops share exactly
two spins with these loops, so the flip does not change their
chirality.

Ignoring the possible effects of the boundary, the number
of distinct triaxial ground states corresponding to the same
three-color state is given by the number of such distinct loop
configurations, which in turn is equal to the number of ways
in which loops may be placed on the dual honeycomb lattice,
ntriax = 2N = 2N�—the same degeneracy count that we have
obtained earlier.

The aforementioned healing procedure also establishes the
equivalence between classical ground states of the uniform
and staggered pure chiral models. Specifically, we can change
the chirality of all upside-down triangles by flipping spins of
bases of every other upright triangle in each horizontal row.

Notice, however, that the transformations between differ-
ent states involving spin flips only establishes their classical
equivalence; a spin flip is not a canonical transformation for
quantum spins as it does not preserve the commutation re-
lations between their components. As a consequence, even
semiclassical features, such as spin-wave spectra discussed in
Sec. V B are not equivalent for the uniform and staggered pure
chiral models (λ = ±1) as well as, generally, for different
triaxial states obtained from one another by flipping all spins
along a loop with no sharp corners. The latter statement has
one notable exception: as will be discussed in Sec. V B, the
spin-wave spectra of two triaxial states obtained from one
another by flipping spins of just two out of three colors are
identical. Note that in this case flipping these spins can be
achieved by means of rotating them by π around the axis cor-
responding to the third color, which is a weathervane mode.

In general, any triaxial state supports weathervane modes
that are very similar to those of a KHAFM: All spins aligned
along two alternating axes can be rotated about the third axis
by the same arbitrary angle irrespective of the Z2 variable
arrangement; an example of such a mode is shown in Fig. 2.
Rotating these spins by π/2 results in another triaxial state
whereas a rotation by π—a π -weathervane mode—simply
flips all spins around a loop hosting the mode. As will be
shown in Sec. V B the effects of a π -weathervane rotations
are mathematically equivalent to a canonical transformation
of the participating spin variables, which can be “gauged out”
from the semiclassical equations of motion.

C. The mixed model, 0 < |λ| < 1

In the mixed model, the ground state of each triangle is
obtained by interpolation between three orthogonal spins and

FIG. 2. Weathervane modes in a triaxial ground state of a chiral
model are similar to those for the coplanar states of the KHAF:
The spins aligned along two directions and forming a close loop
are rotated by an arbitrary angle around the axis defined by the
spins neighboring the loop. Here spins lying in the x − y plane (the
lattice plane) and belonging to a loop encompassing three hexagons
(indicated in gray) are rotated around the z axis.

and their in-plane 120◦ arrangement. In the process the three
spins “repel” from the space diagonal of the cube they span at
|λ| = 1 by the same amount, until at λ = 0 they end up in the
plane perpendicular to that space diagonal.

In terms of the angle θ that each spin makes with the space
diagonal, the energy of such a configuration of three spins can
be written as

E� = 3
4 [(1 − |λ|)(1 + 3 cos 2θ ) −

√
3|λ| sin θ sin 2θ ]. (4)

An analytic expression for the angle that minimizes the energy
and hence describes the ground state on each triangle is given
by

cos θGS = |λ| − 1 +
√

(1 − |λ|)2 + λ2

√
3|λ| . (5)

The corresponding dependence of the ground-state energy on
the absolute value of parameter λ is shown in Fig. 3. The angle
between the adjacent spins in the ground state ϕGS is given by
cos ϕGS = (3 cos2 θGS − 1)/2.

While there are multiple arrangements of spins that simul-
taneously minimize the energy of every triangle, satisfying the
ground-state condition while preserving the three-color nature
of the ground state whereby all spins are aligned along the
same three directions (see Fig. 3) imposes more constraints
than in the pure KHAFM or pure chiral case. Specifically, in
order to make three-color ground states of individual lattice
triangles compatible with one another, one needs to ensure
that the space diagonals for the three spins are the same for
all triangles. This is guaranteed if the three axes defined by
the three colors have the chirality that minimizes the chiral
terms in the Hamiltonian. Unlike in the pure chiral case where
the “wrong” chirality of a particular triangle can be cured
by reversing an odd number of participating spins, this is
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FIG. 3. Triaxial ground states. (a) Variation of the angle between
the three spin axes in the triaxial states in the mixed model, as
described by Eq. (5). (b) Variation of the ground-state energy per
spin in the mixed model.

no longer an option if λ 	= ±1 since the tree axes are not
orthogonal anymore.

The states, which incorporate the appropriate flux patterns
are the familiar ones from the KHAFM. For the uniform
chiral term, 0 < λ < 1, this is the q = 0 state, in which all
arrangements of A, B, C in Fig. 1(a) have the same chirality
for all triangles. For the staggered chiral term, −1 < λ < 0,
this is the

√
3 ×√

3 state.
The weathervane modes associated with these three-color

ground states (i.e., with the q = 0 state for 0 < λ < 1 and the√
3 ×√

3 state for −1 < λ < 0) retain the same basic nature
found at λ = 0 and λ = ±1: all spins along a loop defined by
two colors—a straight line in the q = 0 state or an elementary
hexagon in the

√
3 ×√

3 state—can be uniformly rotated by
an arbitrary angle around the axis corresponding to the third
color. However, the weathervane modes can no longer connect
different three-color states with one another. This is not at
all surprising since there is a unique three-color ground state
anywhere in the mixed regime, λ 	= 0 and λ 	= ±1.

In addition to a unique three-color ground state for each
value of parameter λ in the regions −1 < λ < 0 or 0 < λ < 1,
there are still infinitely many ground states at each λ that
are not connected to the three-color ground states by weath-
ervane rotations. Their construction is loosely similar to the
first proof of the extensive number of distinct Z2 sectors
associated with the triaxial states in the pure chiral case (λ =
±1) presented in Sec. III B; it parallels the construction of
ground states in the bond-disordered KHAFM [45].

Begin with the bottom row of upside-down triangles and
fix the direction of the bottom spin arbitrarily for each of
them. Now chose the directions of the two other spins in
each of those triangles so that they satisfy the ground-state
condition. Since the upside-down triangles share no spins,
each of them can be satisfied independently and furthermore,
there is a rotational degree of freedom associated with each
of them since the top two spins can be simultaneously rotated
about the direction of the fixed bottom spin with no energy
cost. Now, starting from the left, use this rotational degree of
freedom to arrange the correct angle ϕGS between adjacent
spins belonging to the bases of two neighboring upside-down
triangles. This is generically possible since for a fixed spin on
the left, the spin on its right can be rotated by an arbitrary
angle about the axis determined by the right spin’s bottom
neighbor, i.e., unrelated to the left spin. This can be visualized
as follows: fix the spin on the left and define the “target man-
ifold” for its right neighbor—a circle on a unit sphere whose
polar angle (measured from the left spin) is fixed to ϕGS, the
angle between two adjacent spins in a ground state, while the
azimuthal angle is arbitrary. The actual possible directions of
the right spin correspond to another circle with the same polar
angle but this time measured from the direction of the bottom
spin, which is unrelated to the direction of the spin on the left.
The two circles on the sphere would generically (albeit not
always) cross at two points. (Note that they are guaranteed to
cross if ϕGS = π , with the choice between the two crossing
points being intimately related to the Z2 degree of freedom
for the triaxial states of the pure chiral model.) If by bad luck
the circles do not cross, one can step back and try updating
the choices made at previous steps until this procedure works.
Once the directions of all spins in the horizontal row have
been fixed, we look at their neighbours above, i.e., at the spins
at the top vertices of upright triangles. Since the directions
of the two spins at the base of each of those triangles are
already fixed, the direction of the spin above them is uniquely
determined by the ground-state condition (5). Upon this, the
argument proceeds recursively until all spins have been ori-
ented.

The overall dimensionality of the manifold associated with
these ground states is subextensive in terms of continuous
degrees of freedom: we have been allowed to arbitrarily orient
the bottom spins and then the azimuthal angle of the left-most
spin in each horizontal row is still arbitrary. There is, however,
an extensive discrete degeneracy associated with the choice of
two intersection points in the procedure outlined above. This
choice can be generically made for each of the upside-down
triangles whose number is that of the kagome unit cells. Curi-
ously, the number of weathervane modes in the

√
3 ×√

3 state
is extensive and so is the dimensionality of the GS manifold
connected to the

√
3 ×√

3 state by weathervane rotations at
−1 < λ < 0, with their entropy far outweighing that of the
generic ground states we have just constructed. Note that the
generic ground states do not have any weathervane modes,
a fact that will be shown to be detrimental for their selec-
tion by the order-by-disorder mechanism. We also remind the
reader that the three-color ground states of the mixed model
are unique: the q=0 ground state of the mixed model with
uniform chirality and the

√
3 ×√

3 ground state for the model
with staggered chirality.
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IV. THERMAL ORDER BY DISORDER

A. General considerations

The low-energy spectrum of a conventional semiclassical
magnetic system is described in terms of spin waves, or
magnons. Most such excitations are conventional harmonic
modes. However, one of the common features of frustrated
systems is the existence of soft modes whose energy vanishes
in the harmonic approximation. At small but finite temper-
ature, ground states with a significant number of soft modes
can be selected over generic ground states by thermal order by
disorder (TObD). Specifically, TObD occurs when harmonic
contributions to the partition function from fluctuations near
a subspace of the ground-state manifold result in a noninte-
grable divergence [46]. The criterion for that divergence is
expressed by the inequality

D − S − M � 0, (6)

where D is the dimension of the ground-state manifold, S is
the dimension of the ground-state subspace into which the
system may order, and M is the number of soft modes in that
subspace.

The dimension of the ground-state manifold D may be esti-
mated by the method known as Maxwell counting, subtracting
the number of ground-state constraints from the number of
degrees of freedom of the system

DM = F − K. (7)

The Maxwell constraint counting typically underestimates the
dimension since it assumes that all constraints are indepen-
dent. In cases where all constraints can be satisfied, Maxwell
counting provides a lower bound, D � DM. For that reason
replacing D with DM in Eq. (7) can not be used to rigorously
establish the existence of TObD, nevertheless this is a useful
exercise for assessing such a possibility heuristically.

Maxwell constraint counting offers the same estimate for
D for the entire range of λ in the mixed chiral-Heisenberg
model of Eq. (1). Every spin has two degrees of freedom,
and every triangle has three spins, each of which it shares
with one other triangle. That gives F/N�,� = 2 × 3/2 = 3
degrees of freedom per triangle, with N�,� being the number
of triangles. Irrespective of λ, the number of constraints is
also K/N�,� = 3: The direction of the first spin is arbitrary
(no constraints), the second spin has a fixed polar angle (one
constraint) but unconstrained azimuth, the direction of the
third spin is completely fixed (two more constraints). An alter-
nate perspective is this: Each triad of spins has six degrees of
freedom, but once the ground-state condition has been met for
a particular triangle (see Fig. 3), only three remain, the three
Euler angles. Therefore the number of constraints is again
K/N�,� = 6 − 3 = 3. Consequently, just like the KHAFM,
both mixed and pure chiral models are marginally constrained
according to Maxwell counting: DM = 0.

A tighter lower bound on D can be obtained by considering
the independent “directions” by which one may leave a par-
ticular GS state while remaining in the GS manifold. For the√

3 ×√
3 state, there is one independent weathervane mode

for every unit cell, i.e., one for every three unit cells of the
kagome lattice itself. The dimension of the GS manifold must
be at least this large, provided that the

√
3 ×√

3 state is one

of the ground states, which is the case for −1 � λ � 0 and
λ = 1. This observation is crucial because it demonstrates that
D � N�/3 (where N� = N/3 is the number of upside-down
triangles, which is equal to that of unit cells of the kagome
lattice) is extensive in system size. Therefore, whenever the√

3 ×√
3 state is one of the ground states, i.e., for −1 � λ �

0 and λ = 1, the dimensionality of the ground-state manifold
D � N�/3, and we expect this bound to be tight since the√

3 ×√
3 state has the largest number of weathervane modes.

For the mixed model with uniform chirality, 0 < λ < 1,
the

√
3 ×√

3 state is no longer a ground state and therefore
this bound does not apply. Instead, the ground state with the
greatest number of independent weathervane modes is the
q=0 state. Since all weathervane modes must be completely
straight in this case, the corresponding lower bound is propor-
tional to the perimeter of the system rather than the area, i.e.,
D is no longer extensive.

Note that S in Eq. (6) is never extensive and hence the
possibility of TObD hinges on the number of soft modes M.
To avoid confusion, we should reiterate that the soft modes
that we need to consider here are not the same as weathervane
modes: any mode with sub-harmonic spectrum counts as soft
for the purposes of the criterion given by Eq. (6).

Just like in the case of KHAFM [25], the modes of in-
terest turn out to be spin waves with quartic dispersion; in
what follows we will evaluate their number. Notably, such
soft modes exhibit a distinct signature in the low-temperature
specific heat: Whereas harmonic modes contribute kB/2 to the
specific heat, quartic soft modes contribute only kB/4. As a
consequence, the onset of TObD manifests itself through a
diminished specific heat as the temperature is lowered.

B. The Heisenberg antiferromagnet, λ = 0

As a primer, let us put the above statements into context for
the case of the pure KHAFM (λ = 0) first. Here all coplanar
ground states have been shown to have the same harmonic-
order spectrum [25]. Furthermore, there is exactly one such
soft mode per unit cell of the kagome lattice. The remaining
five are conventional harmonic modes. The TObD criterion
in Eq. (6) thus gives (ignoring subextensive S) D − M ∼
Nuc/3 − Nuc < 0, strongly suggesting TObD ordering into
coplanar states. Further selection within the coplanar state
manifold then takes place via anharmonic fluctuations [28],
in favor of a weak

√
3 ×√

3 order parameter [31]. Due to
the rather special feature of the KHAFM—the independence
of the spin wave spectrum of the details of an underlying
coplanar ground state—such discrimination between different
coplanar states cannot be argued at the harmonic level. This
special property does not survive in the presence of the chiral
interaction as we will show in the following section.

The selection of the coplanar states in the KHAFM is
marked by a specific heat per lattice unit cell (with five
quadratic modes and one soft mode per unit cell) of (5 ×
1/2 + 1 × 1/4)kB = 11/4kB or a specific heat per spin,

C/N = 11
12 kB, (8)

a signature of TObD observed in Monte Carlo simulations
[25].
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(a) (b)

1 2
3 1

2 3

FIG. 4. Interaction of weathervane modes in a ground-state order
of type (a) q=0 and (b)

√
3 ×√

3 . The three-coloring of sites
indicates the orientation of spins pointing in either one of the three
orthonormal directions allowed at λ = ±1. The colored lines identify
weathervane modes, i.e., collections of spins, which can be rotated
around a common axis (with the axis color coded in analogy to the
three spin orientations) at zero energy cost, since they only couple
to outside spins, which are parallel to the rotation axis. The crossing
of two weathervane modes, which occurs at sites labeled 1, 2, and
3, is associated with an energy cost that is quartic in the rotation
angles (see text for details). Every triangle is affected at most by three
weathervane modes, as shown here for the gray shaded triangles.

C. The chiral models, λ = ±1

Unlike coplanar ground states, different triaxial states do
not have the same harmonic spectrum. Instead, the soft modes
are now associated with attempting to implement two “inter-
secting” weathervane modes, i.e., weathervane modes sharing
a spin. Since the spin at the intersection cannot simultaneously
participate in two incompatible modes, this results in a “kink”
that lifts the ground state into an excited state. As shown
below, in the case of the pure chiral models, the minimum
energy cost of this kink is quartic in the amplitudes (i.e.,
rotation angles) of the two participating weathervane modes.

Without loss of generality we demonstrate this on the ex-
ample of the q=0 and

√
3 ×√

3 configurations. Note that
the specific type of order does not make a difference for
our considerations: As shown in Fig. 4, every triangle in
the kagome lattice is affected by at most three weathervane
modes; every spin in the lattice is affected by at most two
weathervane modes, irrespective of the specific ground-state
order. Our goal is to compute the local energy change on such
a maximally-affected triangle as a function of the rotation
angles.

For simplicity, we assume that the three spins S1, S2,
and S3 on the triangle point along the x, y, and z direction,
respectively, forming an orthonormal basis and maximizing
the chirality χ123 = 1. We introduce a weathervane rotation
Rx

α around the x axis by an angle α, which affects the spins
S2, and S3 (see Fig. 4), transforming them into Rx

αS2 and
Rx

αS3, respectively. Similarly, the subsequent introduction of
a second weathervane rotation around the y-axis by an angle
β affects spins S1, and S3. The third rotation around the z-axis
by an angle γ affects spins S2, and S3, such that we obtain the
transformed set of spins

S′
1 = Rz

γ Ry
βS1,

S′
2 = Rz

γ Rx
αS2,

S′
3 = Ry

βRx
αS3. (9)

The chirality χ ′
123 on the triangle after performing the spin

rotations can now be computed and the result expanded in the
rotation angles to obtain

χ ′
123 = 1 − α2β2

2
− α2γ 2

2
− β2γ 2

2
+ sixth-order terms.

(10)

We thus obtain three independent quartic modes at the inter-
section of three weathervane defects. The intersection of two
weathervane defects, i.e., setting one of the three angles to
zero, would imply the emergence of a single quartic mode.
With this insight, we can make the central observation: Upon
introducing an increasing number of weathervane defects to
the system, the total number of independent quartic modes
equals the number of independent rotation angles in the sys-
tem, which is equivalent to the number of weathervane defects
present.

1. Soft modes of the q=0 state

The weathervane modes of the q=0 state wrap around the
torus. The number of soft modes is therefore linear in the
circumferences of the torus, and scales as the square root of
the area. Since there are three species of weathervane modes,
the number of soft modes is roughly three times the circumfer-
ence. This falls short of the lower-bound on the dimension of
the ground-state manifold obtained from the

√
3 ×√

3 state,
which scales linearly with area. Therefore, we do not expect
to observe q=0 order of the pure chiral models.

2. Soft modes of the
√

3 ×√
3 state

On the other hand, the weathervane modes of the
√

3 ×√
3

states are localized to single hexagons. Their number is equal
to the number of kagome unit cells. Hence, they are equal
in number to the soft modes of the KHAFM coplanar states.
They outnumber our lower bound on the dimension D by a
factor of three. Since the

√
3 ×√

3 states are discrete, they
have no continuous “dimension” aside from the overall rota-
tional symmetry of the entire state. Therefore S plays no role
in the thermodynamic limit.

3. A remark on the magnon spectra: Flat and grooved bands

Having identified the soft modes of these two classes of
ground states, we can immediately remark on some of the
characteristics of their lowest magnon bands in linear spin-
wave theory. Since the soft modes of the q=0 states scale
as the length of the system, they are capable of supporting
lines of zero-energy in the lowest magnon band: flat grooves
run through the Brillouin zone. Being subextensive, how-
ever, there are insufficient soft modes to form a complete
flat band. The direction of these zero-grooves may also be
inferred from the states. These lines also exist in the exact
spectra of magnons since implementation of nonintersecting
weathervane modes may be set up for any wavevector, which
is perpendicular to the weathervane modes. In other words,
the weathervane modes may be seen as wavefronts of exact
zero-energy fluctuations.

On the other hand, the soft modes of the
√

3 ×√
3 class

of states are extensive in system size. They scale with the

043019-7



JACKSON PITTS et al. PHYSICAL REVIEW RESEARCH 4, 043019 (2022)

area of the system, and are of sufficient number to form a
completely flat band (to harmonic order). Of course these flat
bands are exactly flat too, since the nonintersecting hexagonal
weathervane modes support exactly zero-energy waves with
any wavevector in any direction whatsoever.

We come back to a more detailed discussion of the magnon
spectra of the q=0 and

√
3 ×√

3 states in Sec. V C below.

D. The mixed model, 0 < |λ| < 1

1. Soft modes of the mixed models

Soft modes also exist for intermediate values of λ, but
there is no purely entropic competition between the q=0 and√

3 ×√
3 states since they never both meet the ground-state

condition for noninteger values of λ. Nonetheless, they are
each favored in the domains in which they are ground states
since the soft modes are counted by the total number of
weathervane modes, but our lower limit on the dimension of
the ground-state manifold is obtained by the number of inde-
pendent weathervane modes. For both positive and negative
noninteger values of λ, the number of soft modes M exceeds
our lower limit on the dimension of the ground-state manifold
D by a factor of three. Therefore, selection of the

√
3 ×√

3
state is expected for −1 < λ < 0, and selection of the q=0
state is expected for 0 < λ < 1.

2. Monte Carlo simulations

Throughout the discussion of the ground-state manifold of
the mixed model in Sec. III C, we stated that different order-
by-disorder mechanisms are expected to occur depending on
the sign of the interaction parameter λ. In order to resolve
the thermal selection of distinct ground-state configurations,
we perform classical Monte Carlo simulations of the model
Hamiltonian Eq. (1) in the full parameter range λ ∈ [−1, 1],
i.e., covering the mixed model as well as the limiting cases of
the pure chiral models and the Heisenberg antiferromagnet.

The simulations are performed on a finite lattice with peri-
odic boundary conditions, comprising L × L unit cells at L =
6 and a total of N = 108 spins. In order to resolve even lowest
temperatures, we employ a parallel tempering scheme for
the concurrent simulation of 136 logarithmically spaced tem-
perature points between Tmin = 10−5 and Tmax = 10. Within
every simulation, we prepare the system in a coplanar q=0
state and let it thermalize for 109 sweeps, each attempting N
random local updates of the spin configuration, before taking
measurements for another 108 sweeps.

We begin our study with an analysis of the scalar spin
chirality, as defined in Eq. (2). In order to discriminate the
uniform chiral model and the staggered chiral model, we
define the uniform chiral order parameter

χuniform = 1

N� + N�

∑
i jk∈�,�

χi jk, (11)

which computes the average chirality on every triangle and is
therefore maximized when the chirality has the same sign on
all triangles, and the staggered chiral order parameter

χstaggered = 1

N�

∑
i jk∈�

χi jk − 1

N�

∑
i jk∈�

χi jk, (12)

�uniform

�staggered
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FIG. 5. Chiral order parameter of the mixed chiral-Heisenberg
model at T = 10−5. For λ < 0 the staggered chirality becomes finite
while the uniform chirality remains zero. Vice versa, at λ > 0 the
uniform chirality assumes finite values. In both cases the values ex-
actly coincide with the chiral-Heisenberg model on a single triangle
(dashed line) where a continuous flattening of orthogonal triaxial
states into coplanar triaxial states is expected (see Fig. 3).

which is maximized when the chirality has opposite signs on
up-pointing and down-pointing triangles. The normalization
constants N� and N� denote the total numbers of upright and
upside-down triangles in the lattice. Calculating these order
parameters, we confirm that the uniform chiral order param-
eter becomes finite for λ > 0 and the staggered chiral order
parameter is finite for λ < 0. Moreover, the magnitude of the
chirality coincides with the value that is expected from triaxial
states at canting angles as defined in Eq. (4) (see Fig. 5).
Within our simulation of the thermodynamic properties of the
system, it is our prime goal to study the onset of magnetic
order—either of the

√
3 ×√

3 state or of q=0 type—as a
consequence of thermal fluctuations. Signatures thereof are
extracted from the specific heat. Following the counting argu-
ment for the contribution of soft modes outlined in Sec. IV B,
we expect the specific heat per spin to approach C/N = 11/12
for the

√
3 ×√

3 state and C/N = 1 for the q=0 state in
the thermodynamic limit. On finite lattices, in contrast, we
may expect finite-size corrections. The number of soft modes
in the

√
3 ×√

3 state equals the number of hexagons in the
lattice, which is Nsoft = L2; in the q=0 state, the number of
soft modes equals the number of straight lines spanning the
lattice, which scales subextensively as Nsoft = 3L. Attributing
a specific heat of 1/4 to every soft mode and a contribution to
1/2 to each of the remaining 2N − Nsoft quadratic modes, the
specific heat of the finite L = 6

√
3 ×√

3 state amounts to

C/N = 11/12,

precisely matching its value in the thermodynamic limit. In
contrast, the specific heat of a finite L = 6 q=0 configuration
is

C/N = 23/24,

while it would approach 1 in the thermodynamic limit.
For the Heisenberg model as well as for the chiral models

we observe a drop of the specific heat to 11/12 at temperatures
below T ≈ 10−2, suggesting the onset of

√
3 ×√

3 order. This
behavior also persists in the mixed model at λ = −0.5, i.e.,
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FIG. 6. Specific heat and spin correlations as a function of temperature. (a) Specific heat in the limiting cases of purely staggered chiral
interactions (λ = −1), uniform chiral interactions (λ = 1), and Heisenberg interactions (λ = 0), respectively. The curves of the two chiral
models exactly coincide. In all three cases the specific heat approaches C/N = 11

12 at low temperatures as expected from the counting of
soft modes. The spin correlations G√

3×√
3 (solid curves) build up around the same temperature scale where the specific heat approaches its

low-temperature value and dominate over the Gq=0 correlations (dashed curves). (b) Competition between energetic constraints on the ground
state and entropic corrections (which is present at λ = 0.5 but not at λ = −0.5, see text for details) leads to a strongly suppressed ordering
temperature. The specific heat converges to C/N = 23

24 ( 11
12 ), as expected for q=0 (

√
3 ×√

3 ) order on a finite lattice with L = 6 (see text for
details). Likewise, the spin correlations Gq=0 at λ = 0.5 build up at a lower temperature than the spin correlations G√

3×√
3 for λ = −0.5.

in the case of staggered chiralities. At λ = 0.5, however, the
specific heat approaches a value of 23/24, which is compat-
ible with q=0 order (see Fig. 6). We note that the transition
into the q=0 state is difficult to resolve within Monte Carlo
simulations with only local updates, since it is driven by the
existence of soft modes that involve the rotation of spin chains
spanning the entire system. Consequently, when cooling down
from a random configuration, the simulations fail to equili-
brate into the q=0 ordered state (in which case the specific
heat remains unity, indicating the absence of any soft modes),
which is why we chose to initially prepare the system in a
coplanar q=0 configuration instead (that is still different from
the noncoplanar, triaxial q=0 ground state).

In regimes where q=0 order prevails we also observe
a strong suppression of the transition temperature, with the
specific heat assuming its final low-temperature value only
below T ≈ 10−4. The above observations are in line with
our previous claim that the

√
3 ×√

3 configuration is not a
ground state of the mixed model with uniform chiralities, but
nevertheless it competes with the q=0 configuration due to
its larger number of soft modes, contributing favorably to
the free energy. The competition between the two states be-
comes relevant as λ approaches zero or unity, when the energy
splitting between the q=0 ground state and the

√
3 ×√

3
configuration becomes small. A systematic analysis of the
low-temperature specific heat as a function of the interaction
parameter confirms that it is compatible with the

√
3 ×√

3 for
all values λ � 0. It assumes values that are compatible with
q=0 order for a large portion of the λ > 0 regime; A peak
in the specific heat at λ2 ≈ 0.9 signals the phase boundary
beyond which the

√
3 ×√

3 ground state of the uniform chiral
model becomes more favorable, see Fig. 7. The lower phase
boundary λ1 ≈ 0.05 is less distinct in our calculations of the
specific heat, but it is better visible in spin correlation func-
tions.

We therefore corroborate our findings about the order-
by-disorder driven phase transitions by investigating spin
correlation functions, which serve as order parameters of the
two potential ground-state configurations. For this purpose,
we define the sublattice correlation function

G(Lk ) =
∑

i, j∈Lk

|Si · S j |, (13)

which determines the absolute value of spin correlations
within a given sublattice Lk . Partitioning the kagome lattice
into its three sublattices Lq=0

1 , Lq=0
2 , and Lq=0

3 , which consti-
tute the q=0 configuration (c.f. Fig. 1), we define the global
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FIG. 7. Specific heat as a function of the interaction parameter
λ in the low-temperature regime T = 1.7 × 10−5. The specific heat
per spin assumes values of either C/N = 11/12, associated with the√

3 ×√
3 state or values of C/N = 23/24, associated with the q=0

state (see text for details). The dotted lines indicate phase boundaries
as determined by the spin correlations shown in Fig. 8.
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q=0 correlation function

Gq=0 = 1

N

3∑
k=1

G
(
Lq=0

k

)
, (14)

which is expected to approach unity if the system assumes
long range order of q=0 type. Similarly, we define the global
correlation function

G√
3×√

3 = 1

N

3∑
k=1

G
(
L

√
3×√

3
k

)
(15)

to identify long-range order of
√

3 ×√
3 type. We point out

that, by taking the absolute value of the spin correlations, we
deviate from conventional definitions. However, by virtue of
this construction, the correlation function becomes insensitive
to the sign of the involved spins, thereby extending its appli-
cability to also identify triaxial configurations with additional
Z2 degrees of freedom. At the same time, our definition of the
correlation functions implies that they become nonzero when
applied to a configuration that dos not match their sublattice
structure (e.g., Gq=0 applied to a

√
3 ×√

3 configuration). The
exact lower value depends on the canting angle of the triaxial
state defined in Eq. (5).

We observe that the appropriate correlation function
becomes large in the low-temperature regime, with the corre-
lations building up around the same temperature scale where
the specific heat transitions into its low-temperature value, see
Fig. 6. In contrast to the Heisenberg antiferromagnet, where
the

√
3 ×√

3 correlations become dominant but do not sat-
urate, in accordance to observations in previous studies [31],
the same correlation function is maximized by the chiral mod-
els at temperatures as low as T = 10−5. For the mixed model,
particularly at λ > 0, the spin correlations reflect a suppressed
ordering scale that is in agreement with our specific heat
measurement. Systematically mapping out the dependence of
the spin correlations on the interaction parameter in the low-
temperature regime allows us to distinguish three different
regimes, as shown in Fig. 8:

(i) A region of
√

3 ×√
3 order extending from λ = −1

to λ1 ≈ 0.05. The upper phase boundary extends beyond the
Heisenberg point into the domain where the

√
3 ×√

3 con-
figuration is stabilized only entropically, while not being a
true ground state of the system. Consequently, the location
of the phase transition depends on the temperature and λ1

shifts towards larger values when the temperature is increased.
(ii) A region between λ1 and λ2 ≈ 0.9 where the system
assumes its q=0 ground-state configuration. (iii) A region
of

√
3 ×√

3 order between λ2 and λ = 1 where, similar to
the phase transition near the Heisenberg point, the magnetic
order is stabilized for a small region away from the uniform
chiral point despite not being a ground state. The transition
point λ2 shifts towards smaller values when the temperature
is increased, corroborating that the selection of the

√
3 ×√

3
state in the regime λ � λ2 is through an entropic mechanism,
i.e., via TObD. In particular, the entropic contribution to the
free energy outweighs the energetic preference for the q=0
state for λ < 1. We dub this a “proximate order-by-disorder”
regime in analogy to the notion of a proximate spin liquid
[47–49] in systems where thermal fluctuations expand the ex-

FIG. 8. Spin correlation functions plotted as a function of the
interaction parameter λ in the low-temperature regime T = 1.7 ×
10−5. The q=0 correlation function calculated for a q=0 state is
unity (top dashed line). Applying the q=0 correlation function to
a

√
3 ×√

3 configuration, and vice versa, returns a smaller value
(lower-dashed line), which depends on the canting angle defined in
Eq. (5). The entropically driven phase transitions at λ1 ≈ 0.05 and
λ2 ≈ 0.9 are indicated by the dotted lines.

tent of a quantum spin liquid to the finite-temperature regime
above a nearby ordered ground state.

V. QUANTUM ORDER BY DISORDER

From a semiclassical perspective, the degeneracy among
classical ground states can also be lifted by quantum fluctua-
tions via a quantum order-by-disorder mechanism. Practically
this means that the role of the free energy in selecting between
different states at a finite temperature is taken at T = 0 by
the zero-point energy associated with spin excitations. The
magnon spectrum in various classical ground states of rele-
vance here can be obtained through Fourier transforming and
then numerically diagonalizing coupled semiclassical equa-
tions of motion for the spin degrees of freedom. Since each
(positive) magnon frequency ω(k) contributes ω(k)/2 to the
total zero-point energy (h̄ = 1), integration of ω(k)/2 over the
Brillouin zone and summation over bands yields the quan-
tum harmonic correction to the energy of a classical ground
state. Quantum order by disorder (QObD) then refers to the
mechanism whereby a system selects a state with the low-
est quantum corrections to its classical ground-state energy.
Crudely speaking, the states with the softest modes win.

For the system at hand, the additional Z2 degree of free-
dom that hugely increases the degeneracy of classical triaxial
ground states of the pure chiral model (λ = ±1) in com-
parison to the KHAFM (λ = 0) case presents an additional
complication; it is clearly unfeasible to calculate quantum
corrections to the ground-state energy for all Z2 sectors within
the same triaxial state. However, as we demonstrate below in
Sec. V B, the classical ground states that are only different
by π -weathervane rotations have exactly the same harmonic
correction to their energy, so that not all sectors need to be
computed separately. The remaining number of Z2 sectors to
be computed, however, still remains large, and to avoid having

043019-10



ORDER BY DISORDER IN CLASSICAL KAGOME … PHYSICAL REVIEW RESEARCH 4, 043019 (2022)

i
j

k

l

m

FIG. 9. Labelling of sites of a kagome cluster used in Sec. V B.

to do an explicit calculation for each of these, we devise an
effective theory outlined in Sec. V E.

A. Semiclassical equations of motion in the chiral model

To set the stage, we first derive the semiclassical equa-
tions of motion (EOMs) of spins. These can be used to study
the quantum fluctuations in the classical ground states of the
pure chiral Hamiltonian (λ = ±1) in the harmonic approxi-
mation.

We start by noting that whenever all terms of a spin Hamil-
tonian that involve a particular spin Si can be written in a form

Hi = −h̃i · Si, (16)

where h̃i is an effective Zeeman field that depends on some
subset of the remaining spins, the semiclassical EOM is sim-
ply given by

dSi

dt
= Si × h̃i, (17)

the so-called Landau-Lifshitz equation. (Note that the entire
Hamiltonian H 	= ∑

i Hi due to multiple counting of the spin
interaction terms.)

Let us apply this to the specific Hamiltonian of Eq. (1) with
λ = ±1, i.e., on the pure chiral model. Here we have

h̃i = (S j × Sk ) ± (Sl × Sm) (18)

with the spins labeled as shown in Fig. 9. Therefore the EOM
turns into

Ṡi = S j (Si · Sk ) − Sk (Si · S j ) ± Sl (Si · Sm) ∓ Sm(Si · Sl ).

(19)

Since in any of the ground states of the chiral model the
neighboring spins are perpendicular to one another, linear
contributions to the right-hand side of Eq. (19) can come
solely from the dot products. Consequently, the linearized
EOM for Si in a particular ground state reads

d δSi

dt
= [S j (δSi · Sk + δSk · Si ) − Sk (δSi · S j + δS j · Si )]

±[ j → l; k → m], (20)

where Sn = Sn + δSn with Sn denoting a spin in the ground-
state configuration. Due to the fact that Ṡi ⊥ Si and the
mutual orthogonality of all neighboring spins in their ground-

state configuration, the EOMs for the two components of Ṡi

read

d (δSi · S j )

dt
= δSi · Sk + δSk · Si

±[S j · Sl (δSi · Sm + δSm · Si )

− S j · Sm(δSi · Sl + δSl · Si )], (21a)

d (δSi · Sk )

dt
= −δSi · S j − δS j · Si

±[Sk · Sl (δSi · Sm + δSm · Si )

− Sk · Sm(δSi · Sl + δSl · Si )]. (21b)

Note that the terms in the last two lines of each of these equa-
tions (i.e., the terms in the square brackets, which result from
the interactions of spin Si with the spins in the left triangle in
Fig. 9) appear rather cumbersome. This is, however, deceptive
since half of them always vanish. For each of the triaxial
ground states either S j = ±Sl while Sk = ±Sm or S j = ±Sm

while Sk = ±Sl . Consequently, either S j · Sl = ±1 while S j ·
Sm = 0 or S j · Sl = 0 while S j · Sm = ±1, with the opposite
holding for the dot products involving Sk ). Hence one of the
two terms in the square brackets in each equation always
vanishes while the second one becomes similar to the first line
with the signs depending on the specific triaxial state.

Solving the system of these linearized coupled EOMs re-
sults in the the magnon spectrum, which is then integrated
over the Brillouin zone to obtain the quantum correction to
the classical ground-state energy.

B. Invariance of semiclassical dynamics
under π-weathervane rotations

Having established the semiclassical equations of motion
(21), we can readily investigate the effects of a weathervane
rotation, transforming one triaxial state into another, on the
spin-wave spectrum (without having explicitly calculated the
latter just yet). While we will specifically focus on the rota-
tions of the affected spins by π , which we dub π -weathervane
modes, we note that any rotations by multiples of π/2 pre-
serve the triaxial nature of the state.

Given the unavoidably cumbersome general form of the
linearized EOMs in Eqs. (21), we can greatly simplify the
analysis by focusing solely on the explicit form of the
right-hand side terms in the first line of each of these equa-
tions (while avoiding the need to explicitly spell out the
other terms). Thus, for conceptual clarity, let us begin by
investigating “truncated” EOMs given by the first line in each
of the Eqs. (21) alone; physically they correspond to the
dynamics of spin Si due to its interaction with spins S j and
Sk only,

d (δSi · S j )

dt
= δSi · Sk + δSk · Si, (22a)

d (δSi · Sk )

dt
= −δSi · S j − δS j · Si. (22b)

A weathervane rotation involving a particular lattice triangle
will invariably rotate two of its spins around the axis defined
by the direction of the third spin in the ground state. Therefore
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we need to consider two distinct cases, with the spin Si either
being or not being affected by the weathervane rotation.

Let us first consider the latter case, i.e., the case where the
new ground state is obtained from the original one by rotating
both S j and Sk around the direction of Si by π resulting
in S j → −S j , Sk → −Sk (while Si → Si). Consequently, the
EOMs (22) now read

−d (δSi · S j )

dt
= −δSi · Sk + δSk · Si, (23a)

−d (δSi · Sk )

dt
= δSi · S j − δS j · Si. (23b)

Note that δSn are dynamical variables for which we may
recycle the same notations as those used in Eq. (22). The
question before us is whether Eqs. (23) can in fact be reduced
back to Eqs. (22) by a change of variables. This can indeed be
achieved by redefining the components of δSn for each spin
participating the π -weathervane rotation in such a way that its
component along the axis of the weathervane rotation changes
sign while its component normal to that direction does not.
Applied to Eqs. (23) this entails δS j · Si → −δS j · Si and
δSk · Si → −δSk · Si while all dot products containing δSi

remain unaffected by this change of variables. After doing so,
Eqs. (23) become identical to Eqs. (22) up to an overall sign
of all terms.

The other setting to consider is the case where the
π -weathervane mode involves site i and one of the two re-
maining sites, j or k. Without any loss of generality, let us
assume that it is site j and hence the weathervane rotation is
performed around the direction of Sk resulting in Si → −Si,
S j → −S j . Consequently, the EOMs (22) now read

−d (δSi · S j )

dt
= δSi · Sk − δSk · Si, (24a)

d (δS′
i · Sk )

dt
= δSi · S j + δS j · Si. (24b)

The aforementioned change of variables now implies
δSi · Sk → −δSi · Sk while preserving δS j · Si and δSi · S j

(along with δSk · Si since δSk is not affected by the change
of variables; the weathervane mode does not involve site k).
Once again, after such a change of variables, Eqs. (24) become
identical to Eqs. (22) up to an overall sign of all terms.

Extending this proof from the “truncated” EOMs (22) to
the original ones given by Eqs. (21) is trivial, if notationally
cumbersome since we also have to keep track of which of the
additional sites, l and m, is affected by the weathervane rota-
tion (and in the first case considered here both of them may
or may not be a part of the weathervane mode). The upshot
remains: for each site n participating in the π -weathervane
rotation, a change of variables that redefines the components
of δS′

n in such a way that its component along the axis of
that rotation changes sign while its component normal to that
direction does not, makes the EOMs for the ground state
obtained by said weathervane rotation equivalent to those for
the original state.

Several comments are now in order. Firstly, the effects of
flipping the ground-state direction of a particular spin Sn →
−Sn followed by the aforementioned change of variables for

δSn is mathematically equivalent to rotating the spin axes for
Sn = Sn + δSn by π around the axis defined by its immediate
neighbors participating in the π -weathervane mode (i.e., not
around the axis of the weathervane rotation itself!). That is,
if the axis of the actual π -weathervane rotation transforming
one GS into another is the z axis, the linearized EOMs for
the new state are equivalent to those for the old state after
rotating the spin axes for the participating x-aligned spins by
π around the y axis, and for the y-aligned spins around the
x axis. In other words, the effect of physically changing the
ground state combined with the additional change of variables
is entirely encompassed by the canonical transformation of
the spin variables in the original ground state with a natural
consequence: an invariance of the spin-wave spectrum.

Secondly, it is instructive to check why such an in-
variance of the spin-wave spectrum holds only for the
proper π -weathervane rotations and not for any flipping of
a ground-state configuration of spins belonging to a loop con-
taining no sharp corners. This is because such a ground-state
transformation would invariably involve a spin with two par-
ticipating neighbors aligned along two different axes in their
ground-state configuration. Consequently, one can no longer
define a canonical transformation for this spin—their mutual
neighbor—that establishes the equivalence of the respective
EOMs.

C. Spin-wave spectra

We now turn to the central step in the discussion of the
quantum order-by-disorder mechanism: the actual calculation
of the spin-wave spectrum for the different ground states of
our model (1). We will again focus on the the q=0 and√

3 ×√
3 states, but remind the reader that neither the q=0

nor the
√

3 ×√
3 state is a true ground state of the Hamilto-

nian (1) in the entire range of −1 � λ � 1.

Γ
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Γ

Γ Γ
M

Y

X

X

Y M
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K
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FIG. 10. Brillouin zones and high-symmetry points for the
kagome lattice and its enlarged magnetic unit cells: (a) 3-spin unit
cell; (b) 6-spin unit cell; (c) 9-spin unit cell; and (d) 18-spin unit cell.
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FIG. 11. Spin-wave spectra of the q=0 state for slices through the Brillouin zone in Fig. 10(b) at different values of λ: (a) the staggered
chiral model (λ = −1); (b) the KHAFM (λ = 0); (c) the mixed uniform chiral model (λ = 0.5); and (d) the uniform chiral model (λ = 1).
Zero-energy bands are shown in orange. The spectra are drawn along a path through the high-symmetry points of the reduced Brillouin zone
of Fig. 10(b). Note that in order to represent the full set of bands of these q=0 states, we have defined them on a doubled 6-spin unit cell for
better comparison later with the q=0 state when λ = −1 (which necessarily has a 6-site unit cell).

1. Spin-wave spectra of the q=0 state

The q=0 state, specifically, is a ground state of our model
with uniform chirality, 0 � λ � 1, as well as at λ = −1 (but
not for −1 < λ < 0). Furthermore, the pure chiral cases λ =
±1 are special: the q=0 ground states are not unique due
to the existence of an additional Z2 degree of freedom; see
discussion in Sec. III B. In our discussion here we focus on
the ground states with the smallest possible unit cell, i.e.,
the shortest periodicity. The chiral Hamiltonian with uniform
chirality, λ = 1, allows for the assignment of the Z2 variables
that does not enlarge the unit cell of the three-color q=0 state;
this state is then adiabatically connected to the unique (up to
a global permutation of colors) three-color q=0 ground state
of the mixed model (0 < λ < 1), all the way to the KHAFM
(λ = 0). By contrast, the shortest-period assignment of the
Z2 variables in the pure chiral case with staggered chirality,
λ = −1, doubles the size of the unit cell of the three-color
q=0 state. Consequently, the Brillouin zone in this case is a
half of that in the cases of 0 � λ � 1; the Brillouin zones are
shown in Figs. 10(a) and 10(b), respectively.

Figure 11 presents slices through the spin-wave spec-
tra of the q=0 state made along straight lines connecting

high-symmetry points marked in Figs. 10(a) and 10(b). An im-
portant feature of these spectra is the existence of zero-energy
lines marked in orange, which can be visualized as “grooves”
along high-symmetry lines in the contour plots of the lowest
energy band shown in Fig. 12. For λ 	= 0 such a behavior
is fully expected based on the analysis of harmonically soft
modes in Secs. IV C 1 and IV D 1. The Heisenberg point,
λ = 0, is special in that the lowest band flattens, becoming
a zero-energy band [see Fig. 12(a)]. This is, once again,
consistent with the properties of classical soft modes in the
KHAFM; see Sec. IV B.

2. Spin-wave spectra of the
√

3 ×√
3 state

We now turn to the
√

3 ×√
3 ground states. From the

discussion in Sec. III, we know that the
√

3 ×√
3 three-color

state is a ground state of a model with staggered chirality,
−1 � λ � 0, as well as at λ = 1, but not in the interval 0 <

λ < 1. Analogously to the q=0 case above, the pure chiral
cases λ = ±1 are special due to the existence of an additional
Z2 degree of freedom. However, this time it is the chiral
Hamiltonian with staggered chirality, λ = −1 that allows for
the assignment of the Z2 variables that does not enlarge the

0.1

0.0

0.2

0.3

0.4

0.5

0.6
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0.9
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��0.0 ��0.5 ��1.0

FIG. 12. The lowest band of the q=0 state as contour plots for different values of λ: (a) the KHAFM (λ = 0); (b) equal mixing (λ =
0.5); and (c) the uniform chiral model (λ = 1). While the lowest band is extensively degenerate at λ = 0, its degeneracy is partly lifted to
subextensive lines of momenta (indicated by dashed orange lines) at λ > 0. The contour plots span the Brillouin zone shown in Fig. 10(a),
which corresponds to a 3-spin unit cell.
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FIG. 13. Spin-wave spectrum of the
√

3 ×√
3 state for slices through the Brillouin zone in Fig. 10(d) at different values of λ: (a) the

staggered chiral model (λ = −1); (b) the mixed staggered chiral model (λ = −0.5); (c) the KHAFM (λ = 0); and (d) the uniform chiral model
(λ = 1). Zero-energy bands are shown in orange.

unit cell of the three-color
√

3 ×√
3 state whereas the unit cell

must be doubled in the case of uniform chirality, λ = 1. Since
the unit cell of the three-color

√
3 ×√

3 state already consists
of nine sites, it increases to 18 for λ = 1. The corresponding
Brillouin zones are shown in Figs. 10(c) and 10(d).

High-symmetry line cuts through the spin-wave spectra are
shown in Fig. 13. The remarkable feature of these spectra is
that in contrast to the q=0 ground states, the lowest energy
spin-wave excitations in the

√
3 ×√

3 ground states always
form a flat zero-energy band. This is, once again, fully consis-
tent with the analysis of soft modes in Secs. IV C 2 and IV D 1.
As a side remark, we note a curious feature of the spectrum in
Fig. 13(d) obtained for the pure chiral model with uniform chi-
rality, λ = 1. The zero-energy flat band in this case does not
touch any other bands, which might seem surprising in light of
the counting arguments presented in Ref. [50]. However, that
argument is based on the existence of zero modes that wind
around the torus. Accounting for those modes exceeds the
capacity of one band and hence necessitates band touching.
As has been argued in Sec. IV C 2, the number of independent
harmonically soft modes in a

√
3 ×√

3 ground state of a
purely chiral model is equal to that of the hexagons of the
kagome lattice, i.e., the number of kagome unit cells, which
account for one filled band. In the absence of “topological”
zero modes, the arguments of Ref. [50] are not applicable;
similar behavior has been recently observed in another frus-
trated magnetic system [51].

D. Zero-point energies

The key difference between the the thermal and quantum
order-by-disorder mechanisms is that the former is driven
solely by the harmonically soft modes whereas the latter is a
consequence of all harmonic excitations. All spin-wave bands
contribute quantum zero-point energy corrections to the en-
ergy of the ground state. In integral form the harmonic energy
correction per spin can be expressed as

�Eharm = 1

2

1

nbABZ

∑
b

∫
BZ

d2k ωb(k) = 1

2
〈ω〉, (25)

where nb is the number of bands (i.e., the number of spins in
a magnetic unit cell) and ABZ is the area of the Brillouin zone.

Numerical estimates [52] of this harmonic energy correc-
tion obtained for the q=0 and

√
3 ×√

3 states of the uniform
and staggered chiral models with the smallest unit cells for
each type of the three-color states and each chirality are given
in Table I. Evidently, the harmonic correction to the classical
energy of the q=0 states exceeds that of the

√
3 ×√

3 states
in both models. This suggests a quantum order-by-disorder
mechanism stabilizing the

√
3 ×√

3 state for both uniform
and staggered chiral Hamiltonians. But there remains a barrier
to asserting this selection with confidence: the impossibility of
testing all classical ground states corresponding to the same
three-color state but different arrangements of Z2 variables
(see Sec. III B). For the

√
3 ×√

3 states this is not an issue,
since all possible Z2 arrangements can be obtained from one
another by a sequence of π weathervane modes and hence
result in exactly the same harmonic zero-point energy (as
discussed above in Sec. V B). But the same does not hold for
the q=0 three-color states. This motivates us to construct an
effective low-energy theory for these semiclassical harmonic
corrections.

E. An effective low-energy theory for QObD

As we have seen in the previous sections, the presence of
the Z2 degree of freedom that describes the direction of a
spin along a particular axis in a triaxial ground state intro-
duces an interesting new dimension that differentiates pure
chiral models from the pure Heisenberg case. Specifically, we
have shown that a certain class of Z2 transformations—the π

weathervane rotations—do not affect the spin wave spectrum
and hence do not lift the degeneracy of the corresponding

TABLE I. Semiclassical correction to classical ground-state en-
ergy per spin of various ground states for λ = ±1.

State λ �Eharm

q=0 +1 0.82260(4)√
3 ×√

3 +1 0.82182(5)

q=0 −1 0.83111(1)√
3 ×√

3 −1 0.80558(5)
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ground states via quantum order-by-disorder mechanism. On
the other hand, a generic Z2 transformation (i.e., flipping
all spins along a loop containing no sharp corners) does not
posses this property. Since one cannot possibly test all possi-
ble Z2 arrangements numerically, one can attempt to develop
an effective low-energy theory that captures the effect of those
transformations, e.g., in the spirit of Refs. [20,21,53] where
such a theory was developed for pyrochlore magnets.

1. An effective Hamiltonian

The effective low-energy theory discriminating between
different triaxial ground states of the chiral model should in
general be a Z3 × Z2 theory, with the Z3 sector corresponding
to the assignment of one of the three axes to each site and the
Z2 sector corresponding to the alignment or antialignment of
a particular spin along its local axis. The largest terms in an
effective Hamiltonian should therefore be those enforcing the
correct chirality for each triangle. This can be implemented by
an antiferromagnetic Potts interaction between neighboring
Z3 degrees of freedom and an additional three-body term that
favors the arrangement of Z2 degrees of freedom that results
in the correct sign of chirality for each triangle, given its
arrangement of the Z3 degrees of freedom. The second term
couples the Z3 and Z2 sectors, making the general theory
inescapably complicated. We can, however, try simplifying
our task by “freezing” the Z3 sector and considering a residual
Z2 theory in each sector. This could be a meaningful exercise
if the energy difference between different Z3 sectors, i.e., the
energy associated with π/2 weathervane rotations connecting
these sectors—exceeds that between the states related by Z2

transformations alone. In what follows, we describe our at-
tempt to construct such an effective Z2 theory for two specific
Z3 sectors corresponding to the q=0 and

√
3 ×√

3 states.
It is natural for the effective Z2 theory to be a gauge

theory since the degeneracy is not lifted by Z2 transformations
corresponding to the π weathervane rotations. In an effective
gauge theory such transformations—gaugelike transforma-
tions in the parlance of Refs. [20,21,53]—become genuine
gauge transformations. In the traditions of Z2 gauge theories,
we formulate it on the honeycomb lattice where sites of the
honeycomb correspond to the centers of kagome triangles
and, consequently, the original sites of the kagome lattice
now correspond to the bonds of the honeycomb lattice. (It
is customary to associate gauge fields with bonds rather than
sites of a lattice.) The chirality constraint then translates into
a vertex (AKA star) term in the effective Z2 Hamiltonian:
Given a fixed Z3 arrangement, the vertex term in the Z2

sector will favor either an even or odd number of Z2 “spins”
(denoted henceforth as σ ) to be +1 around a particular vertex.
Therefore

Hv =
∑

v

Jv

∏
i∈v

σ z
i , (26)

where the sum is taken over all vertices v of the honeycomb
lattice while the product is taken over all bonds i adjacent to
a particular vertex. The coupling constant Jv = ±J depends
on the Z3 arrangement around that vertex. For instance, for
a staggered chiral Hamiltonian (λ = −1), the

√
3 ×√

3 state
shown in Fig. 1 would correspond to either all Jv = J > 0 or

FIG. 14. A Z3 × Z2 configuration corresponding to one of the
q = 0 arrangements of Z3 bond variables which are indicated by the
three colors. The Z2 variables correspond to a bond being dashed or
solid. For a uniform chiral Hamiltonian (λ = 1) with the assignment
of x, y, and z to red, green, and blue respectively, σ z = 1 is indicated
by a dashed line whereas a solid line corresponds to σ z = −1. In
a ground-state configuration solid lines must form closed loops; a
segment of such a loop is shown here. All nonwinding loops can
be generated from an “empty” state by a sequence of plaquette flips
that reverse all Z2 variables around a plaquette; in this example the
flipped plaquettes are hatched. A plaquette flip is not a gaugelike
transformation in the q = 0 state and should result in energy change
(see text for details). An end of a line of flipped plaquettes can
be detected using the Z2 flux operator defined in Eq. (27); four
plaquettes with negative flux (i.e., odd parity of solid bonds) are
shaded grey in this example.

all Jv = −J depending on whether the assignment of axes x,
y, and z to the three colors A, B and C forms a right- or a
left-handed triad. The uniform chiral Hamiltonian (λ = 1),
on the other hand, would result in a staggered assignment
of Jv = ±J for the two sublattices of the honeycomb lattice.
The same uniform Hamiltonian would, however, result in a
uniform assignment of Jv = ±J for the q=0 Z3 sector; an
example of both Z3 and Z2 variable assignments that satisfy
the chirality constraint in this case is shown in Fig. 14.

Beginning with the
√

3 ×√
3 state, we observe that every

honeycomb plaquette is “flippable”: negating all Z2 degrees
of freedom corresponds to a π weathervane rotation of the
original spins around a corresponding hexagon of the kagome
lattice. Therefore, the product

∏
i∈ σ x

i can be thought of as
a pure gauge transformation in the effective Z2 theory for the√

3 ×√
3 states. It commutes with the vertex terms, and since

all arrangements of the Z2 degrees of freedom that satisfy the
vertex terms result in the same semiclassical zero-point en-
ergy, the effective Z2 theory for the

√
3 ×√

3 states contains
no other terms. (We shall revisit this point later.)

That is clearly not the case for the q=0 states since the
plaquette flip operator

∏
i∈ σ x

i no longer corresponds to a π

weathervane rotation of the original spins. However, it still
commutes with the vertex terms and consequently the effec-
tive Hamiltonian must contain other terms, with which it does
not commute. One such operator is the plaquette flux operator,
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which we define as

� =
∏
i∈

σ z
i . (27)

While the flux operator commutes with the plaquette flip op-
erator acting on the same plaquette, they anticommute when
acting on two neighboring plaquettes.

The heuristic reason to expect that the effective Hamilto-
nian will contain flux terms is as follows. We know that the
only possible weathervane modes in the q=0 state are those
corresponding to a rotation of the (original) spins situated on
a straight line of the kagome. (With periodic boundary condi-
tions, this line wraps around the torus.) Two π weathervane
rotations of spins situated on two neighboring parallel lines
are translated into flipping the entire line of adjacent hexagons
in the effective theory. Clearly, such an operation cannot
change the energy of the state. Incidentally, this operation
also leaves all fluxes intact since any hexagon that neighbors
a flipped plaquette in fact neighbors exactly two of those and
hence its flux is flipped twice. On the other hand, if we were to
terminate a line of flipped plaquettes, the flux would change in
four hexagons adjacent to last plaquette of the line as can bee
seen in Fig. 14. Bending a line of flipped hexagons also entails
changing the flux in two plaquettes immediately adjacent to
the bend. Therefore, the flux defined by Eq. (27) is not only
sensitive to the deviations of plaquette flip sequences from
those corresponding to the π weathervane rotations, it detects
those deviations locally. Hence, including flux operators into
the effective Hamiltonian will preserve the locality of the
theory. This intuition also finds support in the construction
of the effective low-energy theory for the pyrochlore magnets
[20,21,53].

Focusing on the Z2 flux defined by Eq. (27) has additional
heuristic appeal. We have already seen that the arrangement
of Z2 degrees of freedom around each vertex depends on
whether the Z3 degrees of freedom have been arranged to
form a right- or left-handed triad. For instance, in the ex-
ample shown in Fig. 14, the association of red, green, and
blue with x, y, and z axes led to the vertex term in Eq. (26)
favoring an odd number of negative pseudospins σz around
each vertex. Had we associated these colors with x, z, and
y axes instead, the vertex term would have to favor an even
number of negative pseudospins—or odd number of positive
pseudospins. Graphically, this would result in either replacing
all dashed lines in Fig. 14 with solid ones, and vice versa, or
by changing the designation of a solid line to denote σz = 1
(instead of σz = −1). Crucially, this would not change the
Z2 flux through each plaquette! In other words, the notion
of Z2 flux is invariant with respect to one’s choice between
energetically equivalent Z3 sectors.

One interesting aspect to observe is that while the q = 0
state of the uniform chiral Hamiltonian with the smallest
magnetic unit cell (a unit cell for its Z2 pseudospins) is flux
free, the opposite holds for such a state in the case of the
staggered chiral Hamiltonian. For the staggered Hamiltonian,
the smallest magnetic unit cell is twice the size of a lattice unit
cell and such a state has � = −1 through each plaquette, as
can be seen in Fig. 15. Any pseudospin flips around a closed,
nonwinding loop will reduce the net negative flux.

FIG. 15. A Z3 × Z2 ground-state configuration for a staggered
chiral Hamiltonian. It corresponds to one of the q = 0 arrangements
of Z3 bond variables, which are indicated by the three colors. The
Z2 variables correspond to a bond being dashed or solid. Again, x,
y, and z axes are associated with red, green, and blue respectively.
Pseudospin σ z = 1 is indicated by a dashed line whereas a solid line
corresponds to σ z = −1. All plaquettes in this configuration have
flux � = −1.

While it is natural to expect that the energy will depend
both on the total flux and its spatial distribution—we gen-
erally expect that plaquettes with negative flux interact with
one another—here we pursue a less ambitious program and
simply investigate numerically the harmonic corrections to the
classical GS energy for several arrangements of flux insertion
into the most uniform (as far as Z2 degrees of freedom are
concerned) ground states. This allows us to estimate the cou-
plings in the conjectured effective Hamiltonian

Hq=0
eff = E0 + μ

2

∑
(1 − � ) + Hint, (28)

where μ serves as the “chemical potential” for (negative) flux
whereas Hint encompasses interaction between fluxes—the
term we have not attempted tackling analytically but whose
magnitude we can estimate by considering different spatial
distributions of fluxes.

Figure 16 shows the harmonic correction to the classical
ground-state energy evaluated for q = 0 states with different
densities of Z2 flux in a system of 6 × 6 hexagons. Each flux
sector is represented by two different configurations with the
difference between their energies providing an estimate for the
magnitude of the interaction term. The average slope allows
us to estimate μ and extrapolate the lines through the entire
range of flux densities. Note that the maximum flux density
for the case of uniform chirality (λ = 1) is 6/7, i.e., 6 out
of every 7 plaquettes can have � = −1, whereas for the
staggered case (λ = −1), the minimum density is 1/7. Note
that in both uniform and staggered cases, (negative) Z2 flux is
energetically costly albeit the cost differs dramatically in the
uniform case and staggered cases; the similarity of slopes in
Figs. 16(a) and 16(b) is misleading and is an artefact of dif-
ferent rescaling of energy along the vertical axes. Figure 16(c)
shows these plots presented on the same scale with the dashed
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FIG. 16. Semiclassical harmonic correction of the ground-state
energy per spin for different q=0 states of (a) the uniform chiral
model and (b) the staggered chiral model. (c) Energy of the different
q=0 states shown in subpanels (a) and (b) in comparison to the
energy of the

√
3 ×√

3 state.

lines representing the energy of the
√

3 ×√
3 states (which

is independent of flux). Therefore it appears very convincing
that the lowest energy q = 0 states are indeed the states with
the lowest flux density. Furthermore, in cases of both uniform
and staggered chiral interactions the energies of these states
are higher than those of the

√
3 ×√

3 states and consequently
the latter are energetically selected. Note that the gap between
the flux-free q = 0 state and the

√
3 ×√

3 state of the uniform
chiral Hamiltonian is minuscule (see also Table I). The gap is
significantly larger in the staggered case, which makes us con-
fident that the q = 0 state with the lowest flux density (1/7) is
not a GS contender even though we did not evaluate its energy
explicitly; all numerical results presented in this section have
been obtained on a lattice consisting of 6 × 6 = 36 hexagons
(or, equivalently, 108 original spins) with periodic boundary
conditions, which does not accommodate a state with the flux
density of 1/7.

We conclude that both the QObD and TObD mechanisms
result in the selection of the same

√
3 ×√

3 states. Note that
while common, such a scenario is not guaranteed; we are
aware of at least one example where different orders are
stabilized by thermal and quantum fluctuations [54].

2. The
√

3 ×√
3 states: A semiclassical spin liquid

Our analysis strongly suggest that semiclassical correc-
tions favor

√
3 ×√

3 states over q=0 classical ground states
for both uniform and staggered chiral Hamiltonian, i.e., the
same states are stabilized by both thermal and quantum order
by disorder. We have further argued that different

√
3 ×√

3
states obtained by reversing all Z2 degrees of freedom around
a plaquette—a plaquette flip—have the same energy (at least
in the harmonic order). Therefore the effective Hamiltonian
for the Z2 pseudospins can contain only vertex terms [see
Eq. (26)]; the plaquette flips are equivalent to gauge transfor-
mations in this language. However, thinking of them as pure
gauge transformations is misleading since the pseudospins
correspond to physical, measurable degrees of freedom. A
plaquette flip corresponds to a physical π weathervane ro-
tation of all original spins around a given kagome hexagon.
It is natural to expect that such a process will emerge in a
1/S expansion as a higher order term [55]. With the inclusion
of such a term in the low-energy description, the effective
Hamiltonian becomes

Heff =
∑

v

Jv

∏
i∈v

σ z
i + Jp

∑
p

∏
j∈p

σ x
j , (29)

where the second sum is taken over all plaquettes of the
honeycomb lattice. This, of course, is the well-known Hamil-
tonian of Kitaev’s toric code [56]—an archetypal model
system whose ground states manifest the Z2 topological order.
Note that the signs of individual vertex coupling constants Jv

are immaterial for the spectral properties of this Hamiltonian
and the topological nature of its ground states.

The emergence of this effective Hamiltonian presents a
fascinating possibility: The formation of a semiclassical Z2

spin liquid stabilized by a quantum order-by-disorder mech-
anism, a phenomenon akin to that recently discussed in the
context of the large spin Kitaev honeycomb model [57].
Furthermore, we have already seen that thermal fluctuations
also select the

√
3 ×√

3 state (while being oblivious to the
Z2 sector). Consequently, in a finite-size system the states
stabilized by the TObD mechanism are the ground states of
the same effective Hamiltonian (29). [The finite-size require-
ment is a consequence of the Mermin–Wagner theorem; any
triaxial order entails breaking of the global O(3) symmetry,
which is impossible in the thermodynamic limit at any fi-
nite temperature.] Weathervane modes will mix those states
producing a Gibbs state that at a small but finite tempera-
ture will be described by the density matrix corresponding
to Kitaev’s toric code on a finite system at the temperature
low enough to prevent “electric” excitations but high enough
to allow proliferation of “magnetic” excitations [58]. (The
specific temperature regime corresponds to (Jp/ ln N ) < T <

(Jv/ ln N ) where Jv and Jp � Jv are the coupling constants
associated with vertex and plaquette operators in the toric
code.) In this regime, the von Neumann entropy still has a
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topological contribution of ln 2, i.e., a half of the topological
entropy of the “fully-fledged” toric code [58].

VI. DISCUSSION

To put our analysis of the chiral kagome model into con-
text, let us compare its physics to the celebrated KHAFM, one
of the archetypal examples of a frustrated magnetic system
that has extensively many classical ground states. A special
subset of those states, the coplanar states, play an important
role in its low-temperature physics: these states become se-
lected by a TObD mechanism at low but nonzero temperature.
The chiral kagome model considered in this manuscript pos-
sesses a similarly large ground-state degeneracy. A subclass
of these ground states—the triaxial states—closely resem-
ble the coplanar states of the KHAFM. In fact, they can be
continuously connected to the coplanar states via the mixed
parameter regime where both Heisenberg and chiral couplings
are present (as illustrated in Fig. 3). Despite the similari-
ties, there are also some important differences that lead to
interesting physical consequences: Firstly, the resolution of
these vast, but accidental ground-state degeneracies varies
distinctly between the two models. This is because the number
of harmonically soft spin wave modes—the key ingredient in
the order-by-disorder mechanism—varies between different
triaxial states in the chiral model whereas it is the same for
the coplanar GSs of the KHAFM. Consequently, the selection
of states by either thermal (ToBD) or quantum fluctuations
(QoBD) is markedly different: whenever the

√
3 ×√

3 state—
the state with the largest number of soft modes—is a ground
state of the chiral model, it is unambiguously selected. While
it appears that the KHAFM also selects

√
3 ×√

3 correlations
in the limit of low temperature [31], the underlying mecha-
nism is weaker, as it only takes place beyond the harmonic
description. As a result, the

√
3 ×√

3 order parameter in the
KHAFM does not saturate for T → 0.

Note that, in addition, the fluctuations also stabilize the
order-by-disordered regime even for the mixed model where
the ground state itself is ordered in the q=0 state. There, the
higher energy of the

√
3 ×√

3 state is compensated by the
entropic contribution to the free energy of its soft modes. We
refer to this phenomenon as “proximate order by disorder”,
drawing a loose analogy to the notion of a proximate spin
liquid [47–49] in systems where thermal fluctuations render
spin liquid phenomenology visible above an ordered ground
state.

In passing we note that the formation and entropic stabi-
lization of triaxial ground states for the classical model in
the presence of chiral interactions might also be an essential
ingredient in making a connection to the ground states of the
quantum model. For it has been argued that strong quantum
fluctuations (going beyond their more gentle role considered
in the QoBD mechanism) will lead to a melting of such
noncoplanar order into chiral spin liquids [59] as observed, at
least for the case of uniform chiralities, in the quantum model
[38].

But perhaps the most interesting distinct feature of the clas-
sical chiral model with regard to the KHAFM is the additional
Z2 degree of freedom associated with triaxial states. The
order-by-disorder selection of

√
3 ×√

3 triaxial states does
not discriminate between compatible arrangements of the Z2

degrees of freedom, which may be thought of as emergent
gauge degrees of freedom. The constraints imposed on these
degrees of freedom turn out to be the same as those in the
Kitaev toric code, i.e., a paradigmatic model of intrinsic Z2

topological order. Adding appropriate dynamics compatible
with these constraints could thus result in the formation of
genuine topological order—a rare example of topological or-
der stabilized by fluctuations.
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J. S. Gardner, J. Lago, D. F. McMorrow, M. Orendáč, A.
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