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Emergence and stability of spin-valley entangled quantum liquids in moiré heterostructures
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Twisting moiré heterostructures to the flatband regime allows for the formation of strongly correlated quantum
states, since the dramatic reduction of the bandwidth can cause the residual electronic interactions to set
the principal energy scale. An effective description for such correlated moiré heterostructures, derived in the
strong-coupling limit at integer filling, generically leads to spin-valley Heisenberg models. Here we explore the
emergence and stability of spin-liquid behavior in an SU(2)spin⊗ SU(2)valley Heisenberg model upon inclusion of
Hund’s-induced and longer-ranged exchange couplings, employing a pseudofermion functional renormalization
group approach. We consider two lattice geometries, triangular and honeycomb (relevant to different moiré
heterostructures), and find, for both cases, an extended parameter regime surrounding the SU(4) symmetric
point where no long-range order occurs, indicating a stable realm of quantum spin-liquid behavior. For large
Hund’s coupling, we identify the adjacent magnetic orders, with both antiferromagnetic and ferromagnetic
ground states emerging in the separate spin and valley degrees of freedom. For both lattice geometries the
inclusion of longer-ranged exchange couplings is found to have both stabilizing and destabilizing effects on
the spin-liquid regime depending on the sign of the additional couplings.

DOI: 10.1103/PhysRevResearch.2.013370

I. INTRODUCTION

Spurred by the discovery of a plethora of insulating and su-
perconducting states in twisted bilayer graphene (TBG) [1,2],
a growing stream of experimental evidence points to the
generic emergence of correlated electronic behavior in vari-
ous moiré heterostructures [3–12]. The basic mechanism that
gives rise to strongly enhanced correlation effects in these
materials is the formation of long-wavelength moiré patterns
with (almost) flat low-energy bands whose narrow bandwidth
becomes comparable to the otherwise negligible energy scale
of the electronic interactions [13–15]. Due to a high degree
of control, e.g., in the regulation of the twist angle, tunable
bandwidths, or fillings, and a low level of disorder, such
systems are discussed as ideal platforms for detailed studies
of quantum many-body states. Despite a vast amount of con-
comitant theoretical activity [16–41], the precise nature of the
observed insulators and superconductors, however, remains to
be explored and settled through the construction of faithful
models and application of appropriate quantum many-body
approaches.

Several model constructions for correlated moiré materials
have been put forward in terms of effective tight-binding
descriptions on the moiré superlattice, augmented by
various interaction terms [38,39,41]. Whereas details of
the models may differ, they feature a series of universal
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traits: (1) an emergent hexagonal superlattice, (2) a
multiorbital structure, and (3) extended Hubbard and Hund’s
interactions. More specifically, while TBG is preferably
described using a honeycomb superlattice [38,39,41], related
structures such as, e.g., twisted double-bilayer graphene
(TDBG) or trilayer graphene/hexagonal boron nitride
heterostructures (TLG/h-BN) are better captured by a
triangular superlattice [6,41–44]. The orbital degrees of
freedom are inherited from the valleys in the original bands,
e.g., the two Dirac valleys in the Brillouin zone of graphene.

Beyond these universal traits it has been argued that band
topology can play an important role in moiré heterostruc-
tures [35,41,45–48]. Faithfully incorporating a nontrivial band
topology in an effective tight-binding model and simulta-
neously maintaining all symmetries, for example, for TBG,
is a formidable task, which can lead to complex multiband
models that refuse a reduction to the flat bands only [49–51].
However, at least in some flat-band moiré heterostructures,
including TLG/h-BN, the quantum valley topological number
can be tuned from being nontrivial to being trivial by applying
a perpendicular electric field [35,41,43]. In that latter case,
the universal traits (1)–(3) may be combined into a minimal
two-orbital extended Hubbard model [16,17] serving as a
paradigmatic starting point. Its kinetic term

Ht = −t
∑

〈i j〉

4∑

α=1

(c†iαc jα + H.c.) , (1)

for the electrons combines the spin projection s ∈ {↑,↓} and
valley quantum number l ∈ {+,−} in a flavor index α ∈
{(↑,+), (↑,−), (↓,+), (↓,−)}, reflecting an effective SU(4)
symmetry. On the triangular lattice this results in a set of four
degenerate bands, which can potentially describe, e.g., the set
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of minibands above charge neutrality in TDBG or TLG/h-BN
at appropriately tuned out-of-plane electric field.

The simplest conceivable interaction term retaining
the SU(4) symmetry is a Hubbard interaction Hint =
U

∑
i(
∑4

α=1 niα )2, which can arise in the limit of large lat-
tice periods where the interaction depends primarily on the
total charge on a site and becomes the dominant interaction
scale. In this strong-coupling limit, the kinetic term can
then be treated perturbatively [16,17,41,43]. With an inte-
ger number of electrons per site this leads to an effective
spin-valley Heisenberg Hamiltonian with SU(4) symmetric
superexchange coupling JH ∝ t2/U . Additional symmetry-
breaking interactions are also expected, in particular in the
form of further Hund’s-type couplings in either the spin or
valley degrees of freedom [16,17]. Moreover, Wannier state
constructions suggest that further-neighbor interactions can
become sizable [38] and should augment any minimal model.
We note that for TLG/h-BN an intersite Hund’s interaction
has been argued to provide a leading ferromagnetic contribu-
tion to the nearest-neighbor exchange coupling in the strong-
coupling limit [43]. Away from the strict limit, however,
antiferromagnetic superexchange may dominate [43]. In this
regime, the triangular geometry together with the additional
valley degrees of freedom augments the role of quantum fluc-
tuations suggesting that the system may host exotic quantum
liquid behavior. In view of the large and ever-growing number
of different correlated moiré heterostructures and the persis-
tent interest in exotic quantum liquid behavior, we take this
observation as a motivation to study generic antiferromagnetic
spin-valley Heisenberg models. Further possible applications
of such models are, e.g., Mott insulators with strong spin-orbit
coupling [52–54].

More specifically, in this work, we explore
antiferromagnetic nearest-neighbor spin-valley Heisenberg
models with SU(2)spin ⊗ SU(2)valley symmetry for both
triangular and honeycomb lattice geometries, which we later
supplement with further-neighbor interaction terms. Our focus
is on the case of half-filling of the underlying Hubbard model,
i.e., two electrons per site. For the effective Heisenberg model
at strong coupling, this implies that we are working with the
six-dimensional self-conjugate representation of SU(4) spins.
This is in contrast to the four-dimensional fundamental repre-
sentation of SU(4) relevant to, e.g., the case of quarter-filling.

For both lattice geometries, we find extended parame-
ter regimes surrounding the SU(4) symmetric point where
no long-range symmetry-breaking order occurs, indicating
a stable realm for a spin-valley entangled quantum liquid.
Moving further away from the SU(4) symmetric point, we find
magnetic order in the spin and valley degrees of freedom that
can be either antiferromagnetic or ferromagnetic. To explore
the effect of longer-range interactions, we augment our model
by a next-nearest neighbor coupling and determine its role
in stabilizing quantum spin-valley liquid (QSVL) behavior
versus long-range order for different signs of the coupling
and the two lattice geometries. Our work complements earlier
work for the case of quarter-filling, where it was argued that a
QSVL state with neutral gapless fermionic excitations forms
on the honeycomb lattice [53], while on the triangular lattice
extended parameter regimes without any net magnetization
have been identified in DMRG simulations [55].

II. SPIN-VALLEY MODEL

The starting point of our study is an SU(4) spin-valley
Heisenberg model [16,41], HSU(4) = JH

∑
〈i j〉 T̂ μ

i T̂ μ
j , where

JH is the antiferromagnetic exchange coupling between near-
est neighbors on either the triangular or honeycomb lattice,
and T̂i denote SU(4) spins. The μ=1, . . . , 15 components of
the spin operators can be represented on a fermionic Hilbert
space via the parton construction T̂ μ

i = f †iαT μ
αβ fiβ , where the

index α enumerates four different fermion flavors and the
matrices T μ are the SU(4) generators [56]. At half-filling of
the underlying Hubbard model, the local spin-valley Hilbert
space is six-dimensional (4 choose 2), which leads to a local
filling constraint of two partons per lattice site

∑
α f †iα fiα = 2.

Upon inclusion of Hund’s couplings, the SU(4) symmetry
of the model is explicitly broken [16]. Omitting other sources
of SU(4) breaking, a residual separate spin-valley SU(2)s ⊗
SU(2)v symmetry remains which is reflected by the extended
Hamiltonian

H =
∑

〈i j〉
J
(
σ̂ a

i ⊗ τ̂ b
i

)(
σ̂ a

j ⊗ τ̂ b
j

) + Jsσ̂
a
i σ̂ a

j + Jv τ̂
b
i τ̂ b

j , (2)

where the spin-valley operators read σ̂ a
i = f †is′l ′θ

a
s′sδl ′l fisl , τ̂

b
i =

f †is′l ′δs′sθ
b
l ′l fisl , and σ̂ a

i ⊗ τ̂ b
i = f †is′l ′θ

a
s′sθ

b
l ′l fisl . Instead of enu-

merating the four fermion types by a single index, we have
exposed the spin quantum number s ∈ {↑,↓} and the valley
quantum number l ∈ {+,−} explicitly; Pauli matrices are
denoted by θa, a ∈ {1, 2, 3}. At the high-symmetry point
J = Js = Jv the full SU(4) symmetry is restored. We assume
that the Hund’s interactions are weak enough such that all
exchange couplings are antiferromagnetic [55], i.e., J, Jv,

Js > 0.

III. PSEUDOFERMION FUNCTIONAL RG

Parton-decomposed quartic Hamiltonians of the general
type defined in Eq. (2) can readily be analyzed by the pseud-
ofermion functional renormalization group (pf-FRG) [57–60].
For SU(N) spins, the approach is already naturally formulated
with a local constraint of N/2 fermions per site. It combines
aspects of an expansion in spin length S [61] (which nat-
urally favors magnetic order) and in the SU(N) spin sym-
metry [62,63] (which typically favors quantum spin-liquid
states), and it becomes exact on a mean-field level in the
separate limits of large S and large N . It is thus suited to
resolve the competition between ordered ground states and
QSVL phases in the spin-valley model at hand. We extend
the standard implementation of pf-FRG to incorporate the
SU(2)s ⊗ SU(2)v symmetry, thereby obtaining flow equations
for the one-particle irreducible vertices as a function of an
RG frequency cutoff scale �. Numerically solving the set of
O(106) flow equations at up to 84 Matsubara frequencies and
using a real-space vertex truncation of L=7 lattice bonds in
each spatial direction, spontaneous symmetry breaking, e.g.,
the onset of long-range magnetic or valence bond order, is
indicated by an instability of the RG flow [57,64] which
occurs at some critical scale �c.

In the case of long-range order, to identify the precise
nature of the ordered state we can separately gain access to
the elastic component (ω = 0) of the correlation functions in

013370-2



EMERGENCE AND STABILITY OF SPIN-VALLEY … PHYSICAL REVIEW RESEARCH 2, 013370 (2020)

FIG. 1. Phase diagram on the triangular lattice. (a) Colors indi-
cate the magnitude of the breakdown scale �c in units of J , triangles
(squares) denote regions with negative (positive) effective coupling
Eq. (4); see text for details. (b) Structure factor in the spin (valley)
subspace at dominant Js (Jv), plotted at �c, indicating the onset of
120◦ order. (c) Structure factor at the SU(4) point where no instability
of the RG flow occurs. Local correlations are reminiscent of 120◦

order albeit broadened. The same color scale is applied to both
(b) and (c). The solid gray lines mark the phase boundaries between
the QSVL and the ordered phases, the dotted line marks the diagonal
Js/J = Jv/J .

the spin sector and in the valley sector,

χ s�
i j = 〈

σ̂ a
i σ̂ a

j

〉�
, and/or χv�

i j = 〈
τ̂ b

i τ̂ b
j

〉�
. (3)

Sharp features emerging in the respective structure factors
χ s/v (�q) ∝ ∑

i j ei �q·(�ri− �r j )χ
s/v
i j allow us to deduce the type of

long-range order in either the spin or the valley degrees of
freedom, cf. Figs. 1 and 2.

IV. EMERGENT SPIN-VALLEY LIQUID BEHAVIOR

We begin our analysis with the SU(4) symmetric point,
Js/J = Jv/J = 1. For both the triangular and honeycomb
lattice, no instabilities are detected in the pf-FRG flow, in-
dicating a fully symmetric ground state. In addition, upon
varying the vertex range L we observe no finite-size depen-
dence of the flows, consistent with a ground state without
symmetry-breaking long-range order. This rules out not just
magnetically ordered states, but also valence bond or dimer
crystals [65], an ordering which spins in the self-conjugate
representation are often prone to [66,67]. For SU(4) spins
in the self-conjugate representation we can further use the
Lieb-Schultz-Mattis-Hastings [68–70] theorem to rule out a
featureless Mott insulator as the ground state in the case of
the triangular lattice, whereas such a state is in principle
still a possibility on the honeycomb lattice. We note that
the spin/valley structure factors have features resembling
120◦/Néel order, albeit significantly broadened; see Figs. 1(c)
and 2(c).

FIG. 2. Phase diagram on the honeycomb lattice. (a) Colors
indicate the magnitude of the breakdown scale �c in units of J ,
triangles (squares) denote regions with negative (positive) effective
coupling Eq. (4); see text for details. (b), (c) Structure factors for
a state deep in the Néel ordered phase versus the SU(4) symmetric
state, with the same color scale applied.

V. STABILITY OF SPIN-VALLEY LIQUID
AND ADJACENT MAGNETISM

Moving towards parameter regimes with broken SU(4)
symmetry, Js/J, Jv/J �= 1, we find that an extended paramag-
netic region emanates from the SU(4) symmetric point, see the
white wedges in Figs. 1 and 2. Importantly, this finding sup-
ports the stability of the emergent spin-valley liquid behavior
even in the presence of SU(4) breaking perturbations such as
the Hund’s coupling. Comparing the two lattice geometries,
the triangular lattice gives rise to a parametrically larger
QSVL phase than the bipartite honeycomb lattice, which can
likely be traced back to the geometric frustration of the former.
Along the diagonal line of equal coupling Jv = Js, the QSVL
region eventually collapses and disappears, being replaced by
long-range antiferromagnetic order. Moving along the dotted
diagonal line in the respective phase diagrams we observe
a strongly suppressed breakdown scale �c, relative to the
surrounding parameter space, indicating that quantum fluctu-
ations are strongest when Jv = Js.

For sufficiently strong dominance of either spin or valley
coupling, different ordered phases occur for both lattice ge-
ometries. The transition towards an ordered state is indicated
by a leading instability in the RG flow, either in the spin
or valley sector. To explore the subleading instabilities in
the remaining sector, we employ a heuristic mean-field-like
approach to estimate the effective spin or valley couplings
between nearest-neighbor sites i and j,

Jeff
v = Jv + Jχ

s�c
i j and Jeff

s = Js + Jχ
v�c
i j . (4)

Note that for 120◦ or Néel order in one of the SU(2) sectors
the corresponding nearest-neighbor correlation becomes neg-
ative. Therefore, the effective couplings Jeff

v and Jeff
s may, too,

turn negative and drive a ferromagnetic instability in the other
sector, despite the antiferromagnetic nature of all couplings in
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FIG. 3. Phase diagrams for SU(4) J1-J2 models on the triangular
lattice (a) and the honeycomb lattice (b). Gray boxes indicate the
extent of the quantum spin-liquid (QSL) regime for the respective
spin-1/2 SU(2) model. Structure factors for the respective phases are
shown to the right, where the same color scale is applied to all plots
of the underlying lattice.

the microscopic spin-valley model [55]. This kind of mech-
anism may be at the origin of the spin polarization observed
at half-filling in TDBG [9,10], as first pointed out in Ref. [55]
for quarter-filling. Extracting the sign of the effective coupling
according to Eq. (4) at the transition scale of the leading sector
allows us to distinguish two regimes with either ferro- or
antiferromagnetic correlations in the subleading sector [71].
In Figs. 1 and 2 the so-determined order in the subleading
regimes is indicated by triangle (ferromagnetic) or square
(antiferromagnetic) symbols.

VI. LONGER-RANGE INTERACTIONS

In the ongoing search for an effective microscopic de-
scription for moiré heterostructures it has been pointed out
that longer-ranged Coulomb interactions should not be ne-
glected [38], which in the effective spin model will give rise
to exchange couplings beyond nearest-neighbor. To probe the
stability of the QSVL regime in our model we here consider
the effect of a next-nearest neighbor coupling J2.

Let us first recapitulate the effect a next-nearest-neighbor
coupling J2 for the spin-1/2 SU(2) case on the triangu-
lar and the honeycomb lattices. Here the bare nearest-
neighbor coupling leads to magnetic ordering and only an
antiferromagnetic J2 of intermediate coupling strength facil-
itates the formation of a narrow quantum spin-liquid (QSL)
regime [59,72–74], as indicated by the gray boxes in Fig. 3.
Notably, the induced QSL regime is somewhat larger for the
honeycomb lattice where the next-nearest neighbor interac-
tion introduces geometric frustration.

For the model at hand, we first concentrate on the SU(4)
symmetric point and explore the effect of J2/J1 ∈ [−1, 1].
As shown in Fig. 3, the QSVL region for the SU(4) model
is significantly expanded for both lattice geometries in com-
parison to the SU(2) QSL case. The impact of J2 on the the
full spin-valley (Js, Jv ) phase diagrams of Figs. 1 and 2 is

FIG. 4. Phase diagrams for longer-ranged spin-valley model
showing the effect of ferromagnetic J2/J1 = −0.15 for (a) the trian-
gular and (b) the honeycomb model. The same for antiferromagnetic
J2/J1 = 0.25 for (c) the triangular and (d) the honeycomb model.
Colors correspond to critical scales as indicated in Figs. 1 and 2. For
reference, the phase boundaries at J2/J1 = 0 and the diagonal are
marked by dotted lines.

illustrated in Fig. 4 for both ferromagnetic and antiferromag-
netic J2. While an antiferromagnetic J2 is found to further
widen the wedge-shaped QSVL region, the converse occurs
for ferromagnetic J2, which drives the system closer to the
ordered states. This means that, depending on the sign of
J2, longer-range interactions can actually stabilize and even
expand the region of QSVL behavior.

VII. CONCLUSIONS

In this work, we studied SU(2)s ⊗ SU(2)v-symmetric spin-
valley Heisenberg models in the self-conjugate representation
for both the triangular and honeycomb lattice. Seen as the
effective Hamiltonians generated in the strong-coupling limit
of an underlying Hubbard model, such models are relevant
as minimal models in the exploration of the correlated insu-
lating states of recently synthesized moiré heterostructures.
Depending on which set of minibands the Hubbard model
is designed to describe, the half-filling case studied here can
potentially describe different candidate correlated insulators,
e.g., the insulator at half-filling n = +ns/2 in the triangular
system TDBG.

In particular, we focused on the study of Hund’s-induced as
well as longer-ranged exchange couplings and their impact on
the spin-valley liquid which has been found to emerge in the
limit of SU(4) symmetry in both lattice geometries. We find
extended parameter regimes where this phase is stabilized,
with no signatures of long-range order, providing evidence for
a stable realm of spin-valley liquid behavior. Experimentally,
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such a phase would be consistent with a correlated insulator
lacking spin and valley polarization. However, the precise
nature of the phase and potential experimental fingerprints are
left for future study, though we note that a recent projective-
symmetry-group classification of fermionic partons on the
half-filled triangular lattice suggests the possibility of a U(1)
spin liquid with four Fermi surfaces [75], which would be con-
sistent with our analysis. Our findings hint at the possibility
of spin-valley entangled quantum liquids lurking within the
correlated insulating regimes of moiré heterostructures.
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APPENDIX A: HEXAGONAL MOIRÉ STRUCTURES

As noted in the main text, the minimal model that covers
the necessary universal aspects of the various moiré het-
erostructures is a two-orbital extended Hubbard model. With
four flavors of fermions per site, two spin and two valley
degrees of freedom, this leads to a four band model on the
triangular lattice and an eight band model on the honeycomb
lattice (where the doubling is simply due to the doubling of the
unit cell). Which of these lattices is appropriate to use depends
on the particular moiré heterostructure one is interested in.

For TBG, TLG/h-BN, and TDBG there are a total of eight
minibands near charge neutrality, four above and four below,
that are separated from the rest of the spectrum by trivial
band gaps. Filling of these minibands is thus typically denoted
as ranging from n = −ns to n = +ns, as indicated in Fig. 5
[where, for convenience, we plot n/(ns/4)]. In the case of
TBG, the bands above/below charge neutrality are connected

FIG. 5. Comparison of filling for the effective Hubbard model, ν,
and for the minibands in the experimental cases of interest, n/(ns/4)
(where n = ±ns corresponds to fully empty or filled bands) in the
case of a triangular (upper) and honeycomb (lower) lattice descrip-
tion. Depending on the lattice description the effective Hubbard
model can either apply to all of, or just half of, the minibands, with
its region of applicability denoted by the blue boxes.

via Dirac points, meaning that any effective Hubbard model
must describe all eight bands. This naturally motivates the use
of the honeycomb lattice Hubbard model. Half-filling, i.e.,
the scenario focused on in the main text, thus corresponds
to charge neutrality n = 0. However, in the case of TDBG
and TLG/h-BN the bands above/below charge neutrality are
disconnected from one another, meaning that an effective
Hubbard model description need only focus on one or the
other set of four bands. This naturally leads to a triangular
lattice description, with half-filling now corresponding to n =
±ns/2.

APPENDIX B: PSEUDOFERMION FUNCTIONAL
RG APPROACH

The pseudofermion functional renormalization group (pf-
FRG) has recently been established as a versatile tool for
the investigation of ground state phase diagrams for a wide
class of spin models [57,76,77]. In doing so, the free fermion
propagator G0 = (iω)−1 of a pseudofermion decomposed
quartic Hamiltonian, e.g., Eq. (1) (main text), is modified by a
step-like regularization function �(|ω| − �) with frequency
cutoff scale �, i.e., G0 → G�

0 = G0�
�. The artificial scale

dependence of this theory results in a hierarchy of coupled
one-loop RG flow equations for the one-particle-irreducible
(1PI) interaction vertices. We employ a standard approxima-
tion scheme, where the hierarchy is truncated to exclusively
account for the frequency-dependent self-energy � and two-
particle interaction vertex ��; see, e.g., Ref. [62] for more
details and technicalities.

Here, we describe the aspects of the pf-FRG which are
particular to the present spin-valley model, i.e., the vertex
parametrization for the SU(2) ⊗ SU(2) symmetry and the
implementation of the filling constraint.

1. Vertex parametrization for SU(2)⊗SU(2) symmetry

The flow equations for the special case of SU(2)s ⊗ SU(2)v

symmetry can be extracted from the general fermionic FRG
equations. Here we consider the flows of the self-energy and
the two-particle vertex given by

d

d�
�(1′; 1) = − 1

2π

∑

2

��(1′, 2; 1, 2)S�(2), (B1)

d

d�
��(1′, 2′; 1, 2)

= − 1

2π

∑

3,4

[��(1′, 2′; 3, 4)��(3, 4; 1, 2)

− ��(1′, 4; 1, 3)��(3, 2′; 4, 2) − (3 ↔ 4)

+ ��(2′, 4; 1, 3)��(3, 1′; 4, 2) + (3 ↔ 4)]

× G�(3)
d

d�
G�(4) , (B2)

where the numbers n = {in, sn, ln,wn} represent tuples, com-
prising a lattice site index in, a spin index sn, a valley index
ln and a Matsubara frequency wn. We already employed that
both the full G� and single-scale S� propagator are diagonal
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FIG. 6. Effect of level terms on the static structure factor χ�ds(k) for the triangular lattice. (a), (b) Js/J = Jv/J = 1.0. (c), (d) Js/J =
0.5, Jv/J = 4.0. Negative μ yield no qualitative changes at k = kmax where the structure factor exhibits its peak value. For μ > 0, especially
in the QSVL phase, the flows differ visibly. Note that all axis have been normalized to a common energy scale by z = √

J2 + J2
s + J2

v + μ2 to
account for the change of initial conditions.

in all arguments. Their remaining frequency dependence is
given by

G�
i (w) = θ (|ω| − �)

iw − �
i (w)

, (B3)

S�
i (w) = δ(|ω| − �)

iw − �
i (w)

. (B4)

The spin/valley dependence of the 1PI irreducible vertices can
then be expanded in terms of an su(2) basis. Augmenting this
scheme by symmetry-allowed SU(2)-invariant density terms
and making use of translation invariance in imaginary time,
as well as local U (1) symmetry, the parametrization of the
vertices reads

�(1′; 1)=
∑

α,β


�αβ
i1

(w1)θα
s1′ s1

θ
β

l1′ l1δi1′ i1δ(w1′ − w1) , (B5)

��(1′, 2′; 1, 2)

=
∑

α,α′,β,β ′
�

�αα′ββ ′
i1i2

(w1′w2′ ; w1w2)θα
s1′ s1

θα′
s2′ s2

θ
β

l1′ l1θ
β ′
l2′ l2δi1′ i1δi2′ i2

× δ(w1′ + w2′ − w1 − w2) − (1 ↔ 2), (B6)

where α, β ∈ {0, 1, 2, 3} with θ0 = 1. Exploiting SU(2) sym-
metry in both spin and valley indices we are left with pure den-
sity contributions for the self-energy, while the two-particle
vertex may also contain off-diagonal terms albeit with equal
spin directions, i.e.,

�(1′; 1) = �
i1 (w1)δs1′ s1δl1′ l1δi1′ i1δ(w1′ − w1) , (B7)

��(1′, 2′; 1, 2)

= [��ss
i1i2 (w1′w2′ ; w1w2)θa

s1′ s1
θa

s2′ s2
θb

l1′ l1θ
b
l2′ l2

+ ��sd
i1i2 (w1′w2′ ; w1w2)θa

s1′ s1
θa

s2′ s2
δl1′ l1δl2′ l2

+ ��ds
i1i2 (w1′w2′ ; w1w2)δs1′ s1δs2′ s2θ

b
l1′ l1θ

b
l2′ l2

+ ��dd
i1i2 (w1′w2′ ; w1w2)δs1′ s1δs2′ s2δl1′ l1δl2′ l2 ]

× δi1′ i1δi2′ i2δ(w1′ + w2′ − w1 − w2) − (1 ↔ 2) ,

(B8)

where a, b ∈ {1, 2, 3}. The superscripts ss, sd, ds, dd hereby
denote if the coupling in the spin (valley) sector is spin like
(s) or density like (d).

013370-6



EMERGENCE AND STABILITY OF SPIN-VALLEY … PHYSICAL REVIEW RESEARCH 2, 013370 (2020)

FIG. 7. Effect of level terms on the static structure factor χ�ds(k) for the honeycomb lattice. (a), (b) Js/J = Jv/J = 1.0. (c), (d) Js/J =
0.5, Jv/J = 4.0. Similar to what is seen in Fig. 6, unphysical contributions become relevant only at μ > 0, while for negative μ no qualitative
change is observed.

The initial conditions at the UV scale then read ∞
i1 (w) =

0 for the self-energy and

�∞ss
i1i2 (w1′w2′ ; w1w2) = J , �∞sd

i1i2 (w1′w2′ ; w1w2) = Js ,

�∞ds
i1i2 (w1′w2′ ; w1w2) = Jv , �∞dd

i1i2 (w1′w2′ ; w1w2) = 0 ,

(B9)

for the two-particle interaction vertices. Further details on
the inner workings of the pf-FRG approach can be found in
Ref. [78].

2. Particle-hole symmetry and the half-filling constraint

In the model studied here, the local Hilbert space
for fermionic flavors α ∈ {(↑+), (↑−), (↓+), (↓−)} is
equipped with the particle-number basis B = {|n1, ..., n4〉}.
We define the linear unitary operator P acting on
the basis by exchanging each occupied state with an
empty state P|n1, ..., n4〉 = |1 − n1, ..., 1 − n4〉. By com-
puting the corresponding matrix elements, one finds that
P transforms creation and annihilation operators into
each other, i.e., P† f †αP = fα , P† fαP = f †α . This trans-
formation leaves the spin-valley Hamiltonian and its

groundstate at � → ∞ invariant. On the level of vertex func-
tions, we obtain the identities �(1′; 1) = −�(−1; −1′)
and ��(1′, 2′; 1, 2) = ��(−1,−2; −1′,−2′), where the mi-
nus sign applies only to Matsubara frequencies. The ver-
tex components therefore obey �

i1 (w) = −�
i1 (−w) and

�
�ζ
i1i2

(s, t, u) = �
�ζ
i1i2

(−s, t,−u) where ζ ∈ {ss, sd, ds, dd}.
These symmetries are explicitly implemented in our pf-

FRG approach. However, only one local subspace, namely
the one with two occupied states, is mapped to itself by P ,
i.e., by enforcing the symmetries of that respective subspace
half-filling at each lattice site is expected to be well-enforced
on average. Furthermore, since the particle number per site
must be conserved as a consequence of local U(1) symmetry,
hopping processes that alter the filling would trigger a mea-
surable nonmagnetic instability of the flow, which we do not
observe here.

To test the validity of the above considerations we have
employed a numerical scheme first exploited in [61]. The spin-
valley Hamiltonian is extended by local level terms μT̂ ν

i T̂ ν
i

diagonal in the parton representation of SU (4) spins. Each of
them contributes an energy E (n) = 5

2μ(n − 1
4 n2) where n is

the fermion occupation number. For μ < 0 half-filling (i.e.,
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FIG. 8. Finite-size analysis of the onsite correlation function χ�ds
ii = χ v�

ii for the triangular lattice (orange) and the honeycomb lattice
(blue). (a), (b) Js/J = Jv/J = 1.0. (c), (d) Js/J = 0.5, Jv/J = 4.0. For a paramagnetic ground state the flow shows neither dependence on L
nor an instability and correlations quickly decay to zero beyond nearest neighbors.

n = 2) is favored, whereas for μ > 0 E (n) is minimized for
either n = 0 or n = 4. Hence, if the assumption of half-filling
is correct, then our results at μ = 0 should be consistent with
those obtained for negative μ (up to an overall shift of the
energy scale). However level attractions (μ > 0) should lead
to qualitative changes, since a subspace with different filling
is populated.

By repeating our pf-FRG calculations with finite level
(repulsion or attraction) terms, such behavior can indeed be
observed. While negative values of μ seem to have no qual-
itative impact, level attraction terms lead to visible changes
of the susceptibility flows. In the absence of a breakdown
(top row in Figs. 6 and 7) susceptibilities start to vanish,
consistent with effective lattice vacancies at n = 0(4). For
coupling parameters supporting long-range order (bottom row
in Figs. 6 and 7) the effect of positive μ is however less
pronounced, numerical instabilities a merely shifted towards
lower values of �. Since the exchange couplings relevant
to these phases are usually higher than the simulated ratios
μ/J this behavior is expected. In light of these results we
are confident that half-filling is well enforced even without
an explicit projection scheme.

3. Finite-size analysis of the RG flow

An instability in the vertex function during the RG flow
indicates spontaneous breaking of symmetries that have been
implemented in the initial conditions [62]. Most prominently,
magnetic instabilities appear as pronounced kinks or cusps
in the flow of the momentum resolved two-spin correlations.
Alternatively, one may check the behavior of an on-site cor-
relation function, i.e., χ�

ii , for different values of the vertex
range L. Formally, L does not determine the system size
(which is in fact infinite in pf-FRG) but rather sets the scale
on which spins can be correlated. It is then natural to expect
sensitivity to this parameter near the critical scale since the
physics is governed by the collective behavior of all spins.
However, if the system does not develop an instability down to
the smallest energy scales, i.e., the pf-FRG flow stays regular,
then real-space correlations should be robust with respect to
variations of L.

Indeed as shown in Fig. 8, flows of the spin correlation in
the dominant interaction channel for different L are aligned
within the paramagnetic regions of the spin-valley phase
diagrams, but deviate from each other around the critical scale
in the ordered phases. We find, however, that this effect is

013370-8



EMERGENCE AND STABILITY OF SPIN-VALLEY … PHYSICAL REVIEW RESEARCH 2, 013370 (2020)

FIG. 9. Structure factors for the SU(4) model on the triangular
lattice within the paramagnetic phase. Lines denote the first Brillouin
zone boundary. From left to right J2/J1 = 0.0/0.1/0.2/0.3/0.4/0.5.
At a ratio of J2/J1 ≈ 0.2 a deformation from local 120◦ correlations
to local stripe correlations is observed.

more subtle for the triangular than the honeycomb lattice,
which we attribute to the inherent geometric frustration of the
former.

4. Structure factor evolution in the spin-valley liquid
of the J1-J2 model

The spin-valley entangled liquid ground states of the
nearest-neighbor SU(4) Heisenberg models (on both the tri-
angular and honeycomb lattice) remain stable upon inclusion
of moderate longer-ranged exchange interactions as illustrated
in Fig. 3 of the main text.

FIG. 10. Structure factors for the SU(4) model on the honeycomb
lattice within the paramagnetic phase. Dashed lines denote the first,
full lines the extended Brillouin zone. From left to right J2/J1 =
0.0/0.1/0.2/0.3/0.4/0.5. At a ratio of J2/J1 ≈ 0.3 a deformation
from local Néel to local spiral correlations is observed.

Here, we provide further information about the evolu-
tion of the structure factors upon varying J2/J1. First, we
recall that for J2/J1 = 0, local correlations are reminiscent
of 120◦ (Néel) order for the triangular (honeycomb) model.
Going to large antiferromagnetic J2 > 0, stripe (spiral) order
emerges with the evolution of the structure factor being plot-
ted in Figs. 9 and 10 at the onset of these orders. Around
J2/J1 ≈ 0.2 for the triangular and at about J2/J1 ≈ 0.3 for the
honeycomb lattice, the topology of the momentum resolved
correlation functions changes visibly, indicating a Lifshitz
transition.
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