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The interplay of nematicity and superconductivity has been observed in a wide variety of quantum
materials. To explore this interplay, we consider a two-dimensional (2D) array of nematogens,
local droplets with Z3 nematicity, coupled to a network of Josephson junction wires. Using finite
temperature classical Monte Carlo simulations, we elucidate the phase diagram of this model and
show that the development of superconducting correlations and the directional delocalization of
Cooper pairs can promote nematogen ordering, resulting in long-range nematic order. We obtain
the transport properties of our model within an effective resistor network picture. We discuss these
ideas in the context of the 2D electron gas at the (111) KTaO3 interface and the doped topological
insulators NbxBi2Se3 and CuxBi2Se3. Our work makes contact with Phil Anderson’s numerous
contributions to broken symmetries driven by the saving of kinetic energy, including double exchange
ferromagnetism and the interlayer tunneling theory of high Tc superconductivity.

I. INTRODUCTION

The electron nematic [1], a liquid crystalline state of
electrons which exhibits spontaneous breaking of lat-
tice rotational symmetry, has been extensively explored
in quantum Hall systems [2–9], correlated supercon-
ductors [10–20], and the bilayer ruthenate compound
Sr3Ru2O7 [21–25]. In these systems, nematic order
emerges as a vestige [17, 19, 26] of underlying spin or
charge density wave orders, or due to a density imbalance
between orbital or valley degrees of freedom. Quantum
fluctuations in the nematic order can potentially act as a
pairing glue for electrons, resulting in a purely electronic
mechanism for superconductivity (SC) [27, 28]. This idea
has been substantiated using sign-problem-free quantum
Monte Carlo (MC) simulations of electrons coupled to a
quantum Ising model of nematic order [29, 30].

In this paper, we consider a model of nematogens,
droplets with local Z3 nematicity, coupled to one-
dimensional (1D) Josephson junction wires (JJWs), as
shown in Fig. 1. The Cooper pair hopping between ad-
jacent sites along a given direction is controlled by their
local nematogen orientations. We show that this model
realizes a converse scenario where superconducting cor-
relations – instead of being driven by nematicity – are re-
sponsible for establishing nematic order in the first place.

Our work is partly motivated by the discovery of
SC and nematicity in the doped topological insulators
NbxBi2Se3 and CuxBi2Se3 [31–34]. Doped Bi2Se3 has
been proposed to host a two-component superconduct-
ing order parameter (ψ1, ψ2), transforming as a two-
dimensional irreducible representation of the crystalline
point group symmetry [31–34]. This admits time-reversal
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FIG. 1. Lattice model of Z3 nematogens. Nematogens are
depicted with black/gray lobes, with orientations labeled by
their Z3 states θi = 1, 2, 3. They are coupled by three sets
of Josephson junction wires (green:1, red:2, blue:3), oriented
along the three lattice directions. The intra-wire nearest-
neighbor Josephson coupling ∝ Jh is modulated by the ori-
entation of the two adjacent nematogens; the three differ-
ent potential nematogen combinations coupled on a bond
(black/black, black/gray, gray/gray) are indicated by (solid,
dashed, dotted) arrows. In addition, the three emanating
wires at each site are coupled by an onsite Josephson cou-
pling J`.

breaking SC with (ψ1, ψ2) ≡ ψ0(1,±i) as well as nematic
pairing states with (ψ1, ψ2) ≡ ψ0(cos θ, sin θ), where the
crystalline C3 symmetry dictates θ = 0, 2π/3, 4π/3. A re-
cent experiment favors the latter possibility, with the ob-
servation of Z3 nematic order below Tn≈3.8 K, while SC
only occurs at a lower temperature scale Tc≈3.25 K [34].
In addition, there is evidence for diamagnetism already
near Tn, hinting at SC fluctuations being important near
and above the nematic transition [34], and experiments
have demonstrated uniaxial strain control of nematic do-
mains [35]. It is thus plausible that there are nematogens
even above Tn in doped Bi2Se3, which correspond to do-
mains of a phase-fluctuating nematic pairing state with
different nematic orientations.

A similar interplay of nematicity and SC has also
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been observed in a 2D electron gas (2DEG) formed at
(111) KTaO3 oxide interfaces [36]. At a carrier density
n ∼ 1014/cm2, SC occurs in the 2DEG with Tc ≈ 2 K
[36–38], but an underlying nematicity is revealed via an
anisotropy in the non-linear current-voltage characteris-
tics beyond the critical current density [36]. At a lower
density n∼ 3×1013/cm2, the nematicity manifests itself
already in the normal state, as an anisotropic resistivity
below Tn ≈ 2 K, before SC sets in at Tc ≈ 0.5 K [36].
Recent work has proposed that this anisotropy might
stem from spin-stripe order due to a nested hexagon-
shaped Fermi surface (FS) [39], with SC being stabilized
on those faces of the hexagonal FS which remain un-
gapped by stripe order. However, transport below Tn in
the low density 2DEG exhibits a remarkable non-mean-
field temperature dependence: the resistivity increases
along one direction, [11̄0], as expected for gapping of
a Fermi surface, but it decreases by a similar amount
along the orthogonal [112̄] direction [36]. This behavior
is instead reminiscent of a resistor network made of pre-
formed nematogens which act as anisotropic resistance
units. In the KTaO3 2DEG, with underlying C3 symme-
try, the nematogens may thus correspond to Z3 domains
of unidirectional spin stripe order coexisting with SC [39].
In this scenario, if the resistor network is disordered, it
leads to an average isotropic resistivity. Long-range order
of the nematogens, on the other hand, naturally results
in an increased resistance along one direction and a de-
creased resistance in the transverse direction. In KTaO3,
the experimental observation [36] that normal state ne-
maticity does not extend far above the superconducting
Tc in zero magnetic field, or exists only in a small window
above the critical field for T < Tc, again suggests that
local superconducting correlations are likely to be impor-
tant in establishing nematic order. Consistent with this
scenario, an in-plane field which is less effective at sup-
pressing SC also has a smaller impact on the nematic
resistivity [36].

We thus propose that the experiments on doped Bi2Se3

and the KTaO3 2DEG may be fruitfully viewed in terms
of preformed mesoscopic Z3 nematogens, with their or-
dering being driven by the Josephson coupling between
nematogens and the resulting delocalization of Cooper
pairs. Such symmetry breaking driven by a “kinetic en-
ergy saving” mechanism is reminiscent of the Zener and
Anderson-Hasegawa theory for the establishment of fer-
romagnetism in double exchange magnets, where local
moments order due to the lowering of kinetic energy by
electron delocalization [40, 41]. A similar mechanism
of saving Cooper pair kinetic energy provided the im-
petus for the interlayer tunneling theory (ILT) by An-
derson and coworkers [42–44], yielding a mechanism for
the emergence of high temperature 3D SC from coupling
of 2D non-Fermi liquids. The ILT was later found to be
in conflict with experiments on the cuprates, but a spin
analogue of ILT provides an excellent description of the
quasi-1D frustrated magnetism in Cs2CuCl4 [45].

Our theory may also be viewed as a bosonic variant of

the Kugel-Khomskii model [46, 47] which describes spin
and orbital order of electrons in solids. In this analogy,
SC and Z3 nematicity act respectively as ‘spin’ and ‘or-
bital’ degrees of freedom at a site, while inter-site and
local Josephson couplings on the JJWs play the role of
orbital-dependent exchange interaction and Hund’s cou-
pling respectively.

II. LANDAU THEORY

To study the interplay of superconductivity and ne-
maticity, we begin with a conventional Landau theory
description. We introduce two complex order parame-
ters: Φ for SC, and Ψ for the Z3 nematic. The indepen-
dent order parameters have Landau free energies

SΦ =

∫
d2r

[
rs|Φ|2 + us|Φ|4 + κs|~∇Φ|2 + . . .

]
(1)

SΨ =

∫
d2r
[
rn|Ψ|2 + wn(Ψ3

n + Ψ∗3n ) + un|Ψ|4

+ κn|~∇Ψ|2 + . . .
]
, (2)

where the cubic term is permitted by C3 rotation symme-
try under which Ψ→ ei4π/3Ψ. This reduces the nematic
theory to a 3-state clock/Potts model. The coupling be-
tween the nematic order and the SC takes the form

SΦ,Ψ =

∫
d2r
[
usn|Φ|2|Ψ|2+κsn{Ψ Φ∗∂2

+Φ+c.c.}+. . .
]
(3)

where ∂± ≡ ∂x ± i∂y and “c.c” refers to complex con-
jugate. The gradient coupling is chosen to be invariant
under a C3 rotation which leads to Ψ → Ψei4π/3 and
∂± → ∂±e

∓i2π/3. We have omitted additional gradient
terms, and higher order terms in this action. The gra-
dient coupling κsn causes the superconducting stiffness
to become anisotropic in the presence of nematic order
〈Ψ〉 6= 0. At the same time, integrating out the fluctuat-
ing superconducting order parameter Φ from the gradient
terms can renormalize the nematic mass rn and stiffness
κn, thus helping to stabilize nematic order.

As an illustration, we compute the mass renormaliza-
tion to Gaussian order by dropping us and keeping rs > 0
in Eq. 1. Ignoring usn in Eq. 3, and integrating out Φ
leads to

r̃n = rn − κ2
sn

∫ Λ

0

d2q
q4

(rs + κsq2)2
. (4)

As rs decreases, the superconducting correlation length
grows, and the renormalized nematic mass can change
sign, r̃n < 0, thus favoring nematic order, even when the
bare rn > 0.

In the (111) KTaO3 2DEG, we may view Ψ as a vestige
of spin-density stripe order, with the SC order described
by Φ. In this, we are assuming that the SC order param-
eter in KTaO3 is a conventional single-component order
parameter. In doped Bi2Se3, the two-component nematic
superconducting order parameter may be expressed as a
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composite: (ψ1, ψ2) ≡ Φ(ReΨ, ImΨ). We note that re-
cent work has proposed a distinct Landau theory for ne-
matic SC in Bi2Se3 [48] which highlights its connection
to charge-4e SC [48–50].

III. LATTICE MODEL

In order to study the interplay of SC and nematic order
beyond Landau theory, and in view of the aforementioned
experiments, we consider a model of Z3 nematogens cou-
pled to a network of JJWs, as schematically depicted in
Fig. 1. The Hamiltonian is given by

H=−Jh
∑
i,µ

cos(ϕµi −ϕ
µ
i+µ)∆i,i+µ−J`

∑
i,µ<ν

cos(ϕµi −ϕ
ν
i ) , (5)

where ϕµi denotes the superconducting phase at site i for
wire µ = 1, 2, 3. The first term Jh > 0 denotes Cooper
pair hopping between sites i and i+µ, with the latter
being the nearest neighbor of site i along wire µ, and the
second term J` is the local Josephson coupling between
the three wires meeting at each site. The information
about the nematogen configuration is contained in the
directional Josephson coupling defined as

∆−1
i,i+µ=g−1

i,i+µ + g−1
i+µ,i , (6)

where the conductance gi,i+µ depends on the Z3 nemato-
gen orientation θi=1, 2, 3 as

gi,i+µ =

{
1− η if θi = µ

1 + η/2 if θi 6= µ
. (7)

Following these definitions, for 0 < η < 1, a nematogen
with configuration θi =µ suppresses the Josephson cou-
pling along wire µ relative to the other two directions; on
the other hand, for −2< η < 0, the θi = µ configuration
enhances the Josephson coupling along wire µ. Depend-
ing on the orientations of the two adjacent nematogens,
the nearest-neighbor Josephson coupling ∆i,i+µ can take
on three values: ∆bb, ∆bg, or ∆gg, where the subscripts
denote the colors of the lobes (b=black, g=gray) pointing
towards each other as illustrated in Fig. 1. They assume
explicit values ∆bb = (2 + η)/4, ∆gg = (1 − η)/2, and
∆bg = (η + 2)(1− η)/(4− η), respectively.

In the limit J` = 0, the different JJWs are decoupled
from each other, and we can focus on an individual JJW
with periodic boundary conditions which couple chains
of nematogens. For η>0, we find ∆bb>∆bg>∆gg. Min-
imizing the Josephson coupling energy on a single JJW
(say, green:1) only requires that the nematogen at each
site is constrained to be θi 6= 1, yielding ∆i,i+1 = ∆bb

for every pair of nearest neighbors. However, if we con-
sider adjacent parallel wires, it is easy to check from
Fig. 1 that the lowest energy for a system with peri-
odic boundary conditions is achieved only when all the
nematogens in both wires are globally aligned. Conse-
quently, the ground states of the full 2D model will also
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FIG. 2. Schematic phase diagram for the model Hamiltonian
as a function of the on-site Josephson coupling J`/Jh and tem-
perature T/Jh at fixed η. The high-temperature isotropic nor-
mal state is connected to the low-temperature nematic super-
conductor either via an intermediate nematic normal phase
or an isotropic superconductor. Dashed lines indicate cuts
relevant to low-density and high-density KTaO3 (111) 2DEG,
and to doped Bi2Se3.

exhibit nematic order. In a similar fashion, one can estab-
lish ground state nematic order for η<0. We emphasize
that, since the nematic order is a discrete order, it can re-
main stable at finite temperature in the thermodynamic
limit. However, since the individual JJWs remain decou-
pled 1D XY-type wires, there is no SC for any T > 0;
we thus expect a nematic ordering transition at Tn∝Jh
and a superconducting transition temperature Tc = 0.
Next, when we switch on weak onsite Josephson coupling
0 < J`� Jh, global 2D SC is established with Tc < Tn,
leading to a window of normal state nematic order at in-
termediate temperatures. On the other hand, as J`→∞,
the phases ϕµi on different wires get locked at each site,
leading to a single triangular lattice JJ array, for which
Tc may be larger than Tn. These considerations lead to
the schematic phase diagram for the model Hamiltonian
Eq. (5) as a function of J`/Jh and temperature (for fixed
η) shown in Fig. 2. Below, we confirm the phase dia-
gram using classical MC simulations. We note that the
nematic transition temperature Tn is nearly independent
of the onsite Josephson coupling, but is instead dictated
by the intersite Josephson coupling Jh since it is driven
by Cooper pair hopping.

IV. MONTE CARLO STUDY

We have carried out classical finite-temperature MC
simulations of the model defined in Eq. (5). We studied
finite systems of L×L unit cells with periodic bound-
ary conditions and system sizes up to L = 96. We
equilibrated the system for 5 × 105 MC sweeps, where
a single sweep is defined as one attempted update per
degree of freedom on average, before taking measure-
ments for up to 5 × 106 sweeps. For an improved sam-
pling of the configuration space – in particular when re-
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FIG. 3. Monte Carlo simulation results for the model Hamiltonian in Eq. (5), for fixed η=2/3 at (a-c) J`/Jh=0.005 and (d-f)
J`/Jh=0.05, respectively. (a) Specific heat per site showing a sharp peak at the nematic transition at Tn≈0.13Jh (dashed line),
and a weak bump near the BKT superconducting transition Tc≈0.09Jh (dotted line). (b) The nematic order parameter N near
the nematic transition point. (c) The scaled superconducting phase correlator SµL shows a system-size independent crossing
point at the superconducting BKT transition. Panels (d-f): Similar results, but for J`/Jh=0.05, showing a nearly unchanged
Tn but a significantly higher Tc≈0.19Jh> Tn.

solving the Berezinskii Kosterlitz Thouless (BKT) tran-
sition [51, 52] in a nematic background – we imple-
mented a parallel tempering scheme across 196 tempera-
ture points in an optimized temperature ensemble in the
range 0.05 < T/Jh < 0.25 [53, 54].

We explore the phase diagram as a function of J`/Jh
and temperature, keeping η = 2/3 fixed. In order
to discriminate phases and detect phase transitions,
we compute the specific heat, a nematic order param-
eter, and superconducting phase correlations on the
JJWs. The nematic order parameter is defined as N =
(1/L2)〈

∣∣∑
i e
i2πθi/3

∣∣〉, where θi = 1, 2, 3 labels the local
nematogen configuration; the superconducting phase cor-

relations are defined as Sµ = (1/L4)〈
∣∣∑

i e
iϕµi
∣∣2〉. The

latter quantity is particularly useful for the following rea-
son. When J`> 0, we expect the superconducting tran-
sition to be a BKT transition, which implies a universal
r−1/4 power law decay of phase correlations at the crit-
ical point. This power law manifests in the finite-size
dependence of the phase correlations, Sµ ∼ L−1/4. As
a result, the scaled superconducting phase correlations
SµL = L1/4Sµ are expected to be system-size independent
at the BKT critical point, and the SµL curves for different
L should cross at the BKT transition temperature [55].

The results of our MC analysis are summarized in
Fig. 3. Panels 3a and 3d show the specific heat for
J`/Jh = 0.005 and J`/Jh = 0.05, respectively. In both
cases, we observe a sharp peak at Tn≈0.13Jh which we
associate with the onset of nematicity. This is supported

by the nematic order parameter becoming finite at the
same temperature scale (Figs. 3b and 3e). The BKT
transition is detected as a crossing point of the curves of
SµL for different system sizes, as shown in Figs. 3c and 3f.
We point out that at a BKT transition, it is well known
that there is an undetectable essential singularity in the
specific heat; however, a rough indication of its location
is given by a weak bump in the specific heat associated
with the quenching of entropy tied to phase fluctuations.

We distinguish two qualitatively different cases. For
J`/Jh=0.005, the superconducting Tc≈0.09Jh lies below
the nematic transition temperature Tn. For J`/Jh=0.05,
on the other hand, Tc≈0.19Jh, so that Tc>Tn. The ex-
istence of these two different sequences of phase transi-
tions, with an intermediate phase which is either nematic
with finite resistance or isotropic and superconducting,
confirms the schematic phase diagram in Fig. 2.

V. TRANSPORT

In the normal state, far above Tc, superconducting cor-
relations are short ranged, and the inter-site Josephson
links act as normal resistances ∝∆−1

i,i±µ. We can thus ap-
proximately compute transport properties in the normal
state by translating nematogen configurations into con-
figurations of a corresponding resistor network [56, 57].
Such a resistor network is shown in Fig. 4, where we
consider a triangular mesh of sites {i} with a resistor
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Ri,i+mi i+m

Ii,i+m

x

y

FIG. 4. Triangular lattice of resistors residing on each bond
whose resistance Ri,i+µ is proportional to ∆−1

i,i+µ. Sites on the
left edge are held at the same potential, and so are those on
the right. A potential difference between the edges induces
current Ii,i+µ which is a vector quantity. The y-direction
is periodic, and the dashed lines represent wires with zero
resistance.

on each nearest-neighbour bond [56] whose resistance is
proportional to ∆−1

i,i+µ. To obtain the effective resistivity

[56, 57] for a given configuration {∆i,i+µ}, we apply a
potential difference between the two edges, as illustrated
in Fig. 4, with periodic boundary conditions along y, and
solve equations from Kirchhoff’s laws to obtain the cur-
rents Ii,i+µ. The current densities jx and jy are com-
puted and used to determine the conductivities σxx and
σyx. Similarly, σyy and σxy can be obtained similarly by
exchanging the roles of the periodic and open boundaries.
The conductivity tensor is then inverted and diagonalized
to arrive at the principal eigenvalues of the resistivity ten-
sor. We finally average these results over 100 nematogen
configurations drawn from our MC simulations at each
temperature.

Fig. 5 shows the eigenvalues of the resistivity tensor,
which correspond to ρxx and ρyy if we choose the unique
hard (easy) axis in the nematic phase to be along the
x-direction, corresponding to the parameter choice η > 0
(η < 0). As we cool below Tn, the resistivity increases
along one direction and decreases along the other direc-
tion, consistent with a symmetry analysis discussed be-
low. This anisotropic behavior of the resistivity in the
nematic normal state is in qualitative agreement with
the experiments on the KTaO3 (111) 2DEG.

We interpret our findings in terms of the nematic order
parameter Ψ = |Ψ|eiθ, in terms of which the change in the
resistivity tensor due to nematicity takes on the following
symmetry-dictated form:

∆ρ ∝ |Ψ|
(

cos θ sin θ
sin θ − cos θ

)
(8)

This form ensures that a C3 rotation of the nematic or-
der, which sends θ → θ + 4π/3, can be encoded in a
spatial rotation via ∆ρ→ RT∆ρR, where R is the 2× 2
rotation matrix. The tensor ∆ρ has eigenvalues ±|Ψ|.
This eigenvalue splitting reveals itself in Fig. 5 as we
go below the nematic transition. For θ = 0, this leads

to ∆ρxx = −∆ρyy and ∆ρxy = ∆ρyx = 0, while for
θ = 2π/3, 4π/3, there is a symmetric off-diagonal com-
ponent to the resistivity tensor.

The classical resistor network model is a valid approach
to compute the resistance of the Josephson junction array
when superconducting correlations are very short-ranged.
However, as we approach the BKT superconducting tran-
sition Tc, with Tc� Tn when J`� Jh, these supercon-
ducting correlations grow and must be taken into ac-
count. This will eventually lead to vanishing resistivity
along both directions at Tc. A phenomenological route
to incorporating these correlations is to view patches of
linear dimension ξ(T ), where ξ(T ) is the temperature de-
pendent correlation length measured in units of the lat-
tice constant, as zero-resistance ‘short’ regions. We then
expect the resulting network to have a renormalized re-
sistivity

ρ̃(T ) = ρ(T )/ξ(T ), (9)

where the ‘bare resistivity’ ρ(T ) is shown in Fig. 5 for
J`/Jh = 0.005.

Fig. 6 shows the renormalized resistivity, which be-
comes zero below Tc, where we have used ρ(T ) obtained
from the resistor network model, and the following ansatz
for the BKT correlation length:

ξ(T ) = exp

[
A√

T/Tc − 1

]
. (10)

Here, Tc = 0.09Jh as obtained from our Monte Carlo sim-
ulations shown in Fig. 5 for J`/Jh = 0.005. We choose
two illustrative cases A = 0.1, 1.0 to obtain the renor-
malized ρ̃(T ). These plots are in qualitative agreement
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FIG. 5. Resistivity tensor eigenvalues for the classical resis-
tance network model with (a) η = 2/3 (hard axis along the
x-direction) and (b) η = −1 (easy axis along the x-direction).
The network is obtained by using conductances as given in
Eq. (6), with nematogen configurations drawn from the MC
simulations of the model in Eq. (5) with J` = 0.005, on an
L×L system with L = 20. We average the resistivity over
100 configurations and normalize it by the high temperature
isotropic value ρ0.
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with experimental data on the (111) KTaO3 2DEG. In
the opposite regime, when Tc > Tn in the (111) KTaO3

2DEG, SC develops before the onset of nematicity. The
superconductor should then exhibit an anisotropic crit-
ical current. In doped Bi2Se3, it is possible that this
window of anisotropic resistivity might be small.

VI. IMPACT OF A MAGNETIC FIELD

A perpendicular magnetic field will suppress the SC
gap on individual grains, leading to a decrease in the
Josephson couplings Jh, J`. Within Landau theory, we
expect Jh(B) and J`(B) to decrease ∝(1−B/Bc), where
Bc is the bulk upper critical field. Since Tn ∝ Jh, with
Jh→0 marking the point where the driving force for ne-
maticity is lost, we also expect Tn(B)∝(1−B/Bc). Here
Bc ∼ Φ0/ξ

2
0 , with Φ0 and ξ0 being the superconducting

flux quantum and coherence length, respectively. Exper-
iments on the (111) KTaO3 2DEG at higher densities
have found that bulk SC gets suppressed for Bc ∼ 1 T,
implying ξ0∼10 nm [36].

However, the perpendicular magnetic field may also
lead to Josephson frustration, if we recognize that our
model of Josephson coupling between superconducting
grains being mediated by 1D wires reflects a convenient
idealization of the real system. In reality, the Joseph-
son coupling between grains of size ξg � ξ0 will oc-
cur via the entire inter-grain region. When the field is
strong enough to insert a vortex in this region, it can
effectively suppress the Josephson coupling between two
adjacent grains. This interference effect, which leads to
the familiar Fraunhofer-like pattern in Josephson junc-
tions [58, 59], would manifest itself at a much smaller
field scale Bg ∼ Φ0/ξ

2
g set by the grain size. Assuming

ξg ∼ 10ξ0 would yield Bg ∼ 10 mT. The published data
on lower density (111) KTaO3 2DEG shows evidence of
two distinct field scales and interference-like effects in
magnetotransport [36], which may reflect both of these
mechanisms being at work. A complete account of mag-

netotransport phenomena is a topic for future study.
VII. IMPACT OF DISORDER AND STRAIN

In our model, it is clear that short-range superconduct-
ing correlations are sufficient to establish 2D nematic or-
der. Disorder which limits the range of superconducting
correlations, say by cutting the 1D JJWs to remove the
Josephson coupling on a small fraction of bonds, may
suppress Tc but is naively not expected to significantly
impact the nematic order. However, an Imry-Ma argu-
ment [17, 19, 60] suggests that local random fields arising
from impurities can eventually kill long-range nematic
order on sufficiently long length scales. Indeed, once
we step away from a regular lattice model of nemato-
gens, but view these as randomly located domains, such
disorder is expected to be important. Nevertheless, ex-
periments on the (111) KTaO3 2DEG reveal a resistive
anisotropy, but it is somewhat rounded compared with
the sharp onset seen in our simulations in Fig. 5. This
suggests that random field effects do not cause a com-
plete breakdown of the nematic order on the length scale
of the device. We suspect that homogeneous strain fields
in the device may be playing an important role in pin-
ning the nematic order, and leading to a rounding of the
nematic phase transition.

VIII. DISCUSSION

We have proposed a model of mesoscopic nematogens
which are coupled to each other via JJWs. SC correla-
tions in the JJWs have been shown to drive nematogen
ordering and a spontaneous breaking of lattice rotational
symmetry. Our results explain various observations on
the (111) 2DEG in KTaO3, and may also be relevant to
ultrathin films of NbxBi2Se3 and CuxBi2Se3. An equi-
librium manifestation of nematicity in the superconduc-
tor would be a spontaneous ellipticity in the shape of
superconducting vortices, which could be probed using
a scanning superconducting quantum interference device
(SQUID) [61]. Such vortices may themselves exhibit un-
conventional crystal orders [62]. Formulating and study-
ing a quantum version of our model, and variants which
support time-reversal breaking SC [63, 64], are interest-
ing future research directions. Finally, we note that if
the JJWs in our model represent dislocation lines with
enhanced 1D pairing [65], and the nematogens represent
the local orientation of dislocation lines, a similar model
but with randomness may be relevant for recent experi-
ments on plastically deformed SrTiO3 crystals [66].
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