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Abstract

We present the SpinParser open-source software [https://github.com/fbuessen/
SpinParser]. The software is designed to perform pseudofermion functional renormal-
ization group (pf-FRG) calculations for frustrated quantum magnets in two and three
spatial dimensions. It aims to make such calculations readily accessible without the need
to write specialized program code; instead, custom lattice graphs and microscopic spin
models can be defined as plain-text input files. Underlying symmetries of the model are
automatically analyzed and exploited by the numerical core written in C++ in order to
optimize the performance across large-scale shared memory and/or distributed memory
computing platforms.
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1 Introduction

Frustrated quantum magnetism presents itself as a rich platform for the study and manipula-
tion of unusual phases of matter, including quantum spin liquid phases which evade conven-
tional long-range order [1, 2]. Given the absence of conventional local order parameters in
quantum spin liquids, their formation cannot be captured within the Landau picture of phase
transitions, and their theoretical description requires novel concepts. Instead, it is understood
by now that quantum spin liquids can be conceptualized within a framework of emergent
gauge theories – a perspective which can efficiently capture the fractionalization of physical
degrees of freedom into parton quasiparticles that exist in the background of an emergent
gauge field [3,4]. Going hand in hand with the collective constitution of new, effective quan-
tum numbers is the formation of significant long-range entanglement, which enables the spin
liquid to exhibit a variety of unusual properties, e.g., the ability to host quasiparticle excitations
with non-trivial exchange statistics [5].

Detailed insight into the formation of a Z2 spin liquid can be gained by the example of
the Kitaev honeycomb model, where the effective low-energy theory can be explicitly con-
structed [6]. The manual introduction of appropriate Majorana fermionic parton operators
directly exposes the underlying gauge structure and opens the door for further analytical stud-
ies of the ground state [7, 8], or even for numerical studies of the thermal ensemble at finite
temperature [9,10]. However, the exact solvability of the model breaks down when competing
interactions beyond the plain Kitaev honeycomb model are included, as would be the case for
most candidate material realizations [11–13]. When an analytic solution is unknown, i.e., for
the vast majority of models in frustrated magnetism, it is generally challenging to make the
connection from a microscopic theory to its effective low-energy description. The attempt to
establish such connection poses a general conundrum not only for complicated models with
a large number of competing interactions that attempt to faithfully mimic real materials, but
even for minimal models like the kagome Heisenberg antiferromagnet, which has resisted a
conclusive theoretical description for decades [14, 15]. In such models, answering the seem-
ingly simple question of whether magnetic long-range order in the ground state is present
or absent often requires to conduct a challenging numerical analysis. A number of numer-
ical methods have proven themselves useful for such studies, yet all approaches have their
strengths and their shortcomings.

Surely, the exact solution of the microscopic theory would be desirable, which can be
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achieved by an exact diagonalization (ED) of the Hamiltonian. Due to the underlying exponen-
tially large Hilbert space, however, ED is limited to small system sizes, often yielding instruc-
tive results for two-dimensional models, but being unfeasible in three spatial dimensions. For
low-dimensional systems, good results can further be obtained with the Density Matrix Renor-
malization Group (DMRG), which is based on an efficient (but inherently one-dimensional)
matrix product state representation of wave functions [16,17]. Similarly to ED, the approach
often becomes intractable in three dimensions. Quantum Monte Carlo (QMC) simulations
provide another important backbone of the numerical study of frustrated magnetism. Various
adaptions of QMC can generate quasi-exact results even for three-dimensional systems, unless
the computation is plagued by the fermionic sign problem, which often occurs for frustrated
spin models of contemporary interest. The absence of a universally suited numerical method
for the unbiased analysis of frustrated magnetism – especially in three spatial dimensions –
imposes a need to further refine existing methods as well as explore novel algorithms.

Over the course of the last decade, a pseudofermion functional renormalization group (pf-
FRG) approach, originally proposed by Reuther and Wölfle in 2010 [18], has established itself
as a versatile technique for the analysis of ground state phase diagrams of quantum magnets.
The technique is based on a recasting of spin operators in terms of complex fermions (pseudo-
fermions), with the resulting strongly coupled fermion model being solved in the framework
of the functional renormalization group [19]. It has been demonstrated that the pf-FRG ap-
proach becomes exact in the large-S limit of classical spins [20], as well as the large-N limit of
generalized SU(N) moments [21,22]. The leading-order contributions of both limiting cases,
which are associated with an inherent preference towards magnetic order and spin liquid
ground states, respectively, are treated on equal footing within the pf-FRG, thus making it a
good starting point for the unbiased analysis of competing interactions. Indeed, following its
inception, it was quickly demonstrated for a number of prototypical examples of frustrated
quantum magnetism that the pf-FRG approach is able to predict ground state phase diagrams
which are compatible with existing data that could be obtained by means of other numerical
and analytical techniques; the approach has since been successfully applied to a number of
models of competing Heisenberg interactions [18,20,21,23–37], including examples of long-
range dipolar interactions [38,39], as well as to models with interactions of reduced symmetry,
e.g. Kitaev-like [40–46] or Dzyaloshinskii-Moriya interactions [47,48].

The pf-FRG algorithm can be straight-forwardly applied to spin models in three spatial
dimensions. In fact, many of the aforementioned studies have been conducted on three-
dimensional lattice geometries. Consequently, the pf-FRG makes a large class of spin models
tractable which are notoriously difficult to analyze from the perspective of many established
methods that are often constrained to low-dimensional systems or small system sizes. The
pf-FRG approach, in contrast, operates on an infinite representation of the underlying lattice
structure with no artificial boundaries, making it suitable even for the detection of phases
which are prone to form incommensurate magnetic correlations [20,32,46].

In this manuscript, we present the SpinParser software, which is an implementation of
the pf-FRG algorithm that is designed to be easy to use and flexible in its application, giving
‘out-of-the-box’ access to the numerical analysis of models in quantum magnetism. The soft-
ware is suited for the analysis of microscopic models comprised of two-spin interactions which
preserve time-reversal symmetry. For such models, SpinParser provides access to the elastic
(ω= 0) component of the two-spin correlation functions. The underlying lattice geometry of
the model can be flexible; the software includes an abstraction layer which automatically gen-
erates lattice representations from user-specified two-dimensional or three-dimensional lattice
unit cells and automatically exploits lattice symmetries in the process. Numerically demanding
calculations are enabled by the underlying C++ code with built-in support for shared-memory
parallelization as well as distributed-memory parallelization in an MPI [49] environment.
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The paper is structured as follows. In Sec. 2 we outline the class of models which are
amenable to an analysis with the SpinParser software. In Sec. 3 we give a brief overview
of the pf-FRG algorithm itself, and we discuss details of its implementation in the SpinParser
software in Sec. 4. Usage instructions for the software as well as explanations on how to define
custom lattice spin models are provided in Sec. 5. We round up the discussion by showing two
fully worked out SpinParser calculations in Sec. 6, followed by a brief summary in Sec. 7.

2 Scope of the software

The SpinParser (‘Spin Pseudofermion Algorithms for Research on Spin Ensembles via Renor-
malization’) software is designed to solve the general class of spin models which can be cap-
tured by the microscopic Hamiltonian

H =
∑

i, j

Jµνi j Sµi Sνj , (1)

where Jµνi j are real-valued exchange constants and the spin operator Sµi represents the
µ = x , y, z component of a quantum spin-1/2 moment on the i-th lattice site. In order to
solve such spin models, the software implements the pseudofermion functional renormaliza-
tion group (pf-FRG) algorithm, which we briefly review in Sec. 3. For further in-depth reading
on the pf-FRG approach we refer the reader to Refs. [48,50].

Microscopic spin models of interest can be defined on a variety of different lattice geome-
tries. Therefore, the SpinParser software has been developed to work with generic lattice
graphs that can be flexibly constructed either in two or in three spatial dimensions. The list
of compatible Hamiltonians covers many influential models: the kagome Heisenberg anti-
ferromagnet, the pyrochlore antiferromagnet, and other geometrically frustrated Heisenberg
models; models with exchange frustration arising from multiple competing interactions as ob-
served e.g. in the J1J2-Heisenberg model on the square lattice; models with bond-directional
interactions in the spirit of the Kitaev model. The list of amenable models also covers mod-
els with less symmetric spin interactions, e.g. Dzyaloshinskii-Moriya interactions or so-called
Γ -interactions, which often occur alongside Kitaev interactions in real materials [11–13]. Any
custom lattice spin model can be implemented, provided that it is defined on a lattice graph
in which all sites are equivalent under lattice symmetry transformations and/or permutations
of the spin components.

In addition to the most general implementation of the pf-FRG for the microscopic Hamilto-
nian Eq. (1), the software also provides more specialized implementations which are suitable
for models with higher symmetry and provide increased numerical performance when appli-
cable. One such specialized implementation is addressing models with diagonal spin interac-
tions, which are captured by the Hamiltonian

H =
∑

i, j

K x
i jS

x
i S x

j + K y
i jS

y
i S y

j + Kz
i jS

z
i Sz

j . (2)

The exchange constants K x
i j , K y

i j , and Kz
i j remain bond dependent and thus describe generalized

(anisotropic) Kitaev models.
Similarly, a specialized implementation exists for generalized Heisenberg models which

retain full spin-rotational symmetry. They are governed by the microscopic Hamiltonian

H =
∑

i, j

Ji jSiS j , (3)
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where the interaction energy computes as the dot product of spin operators Si =
�

S x
i , S y

i , Sz
i

�T
.

Due to their high symmetry, the generalized Heisenberg models can be solved most efficiently.
Furthermore, within this specific implementation, the spin is not restricted to have length
S=1/2; it can be generalized to arbitrary spin-S moments, following the extension of the pf-
FRG proposed in Ref. [20].

In carrying out the pf-FRG analysis, the SpinParser software numerically computes the so-
lution to a set of renormalization group flow equations which are associated with the lattice
spin model under study. The flow equations describe the evolution of the (pseudofermionic)
self-energy and vertex functions of the model at zero temperature and are obtained by invok-
ing a (pseudofermionic) parton construction, see the discussion of the underlying theoretical
framework as well as the involved approximations in Sec. 3. The quality of the solution is
guided by a number of user-specified parameters which directly affect the numerical accu-
racy: the effective lattice size, the (Matsubara) frequency resolution of the vertex functions,
and the precision to which the differential equations themselves are solved. Details about the
numerical implementation are presented in Sec. 4.

Ultimately, the SpinParser software provides algorithms to numerically extract the two-spin
correlation function of the form

χ
µν
i j (iω) = 〈S

µ
i (iω)S

ν
j (−iω)〉 , (4)

with iω= 0, which – without the necessity to perform an analytic continuation – yields access
to the two-spin correlation function χµνi j (ω = 0). Its Fourier transformation in momentum
space, theω= 0 component of the dynamic structure factor, is thus readily accessible and can
be used to analyze the potential formation of magnetic order in the ground state. Note that
the components µ,ν of the correlation function are specified in the local frame of reference
for the respective spin operators. We further mention that while the end point of the pf-FRG
flow formally describes the zero-temperature solution of the spin model, it has been pointed
out that intermediate results at finite renormalization group time can be re-interpreted as the
finite-temperature solution of the spin ensemble [29]. This observation allows to assess the
thermal stability of magnetically ordered ground ground states and to extract the spin-spin
correlation functions at finite temperatures.

3 Functional renormalization group

The pseudofermion function renormalization group (pf-FRG) algorithm is a concrete imple-
mentation of the overarching general framework of the fermionic functional renormalization
group [19,51]. It can be thought of as a two-step protocol: In the first step, a microscopic spin
Hamiltonian is mapped onto a (pseudo)fermionic model, which is then amenable to an anal-
ysis within the well developed framework of the fermionic FRG. More specifically, the pf-FRG
approach, as originally put forward by Reuther and Wölfle [18], is built upon the mapping of
spin-1/2 operators onto pseudofermions according to the rule

Sµi =
1
2

f †
iασ

µ

αβ
fiβ , (5)

where µ= x , y, z is the spin component, α,β =↑,↓ denotes the pseudofermion spin, and sum-
mation over repeated spin indices is implicit. When subject to the local half-filling constraint
∑

α f †
iα fiα = 1, this mapping is a faithful representation of the original spin Hilbert space; the

constraint is owed to the fact that the local pseudofermionic Hilbert space is four-dimensional
and needs to be restricted to the physical subspace of dimension two [52]. For completeness,
we mention that other types of FRG implementations for spin models also exist, but they have
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not yet been studied as extensively and lie outside the scope of this work. Such implementa-
tions include a formalism which is built on a mapping of spins onto Majorana fermions [53]
or a formalism which avoids such mapping altogether, rendering fermionic FRG techniques
inapplicable [54].

In this section, we briefly review the main aspects of the pf-FRG approach and the approx-
imations involved. For this purpose, let us assume the general time-reversal invariant Hamil-
tonian for two-spin interactions as shown in Eq. (1). Transforming the spin model according
to the fermionization rule Eq. (5) yields the quartic pseudofermion Hamiltonian

Hf =
∑

i j

Jµνi j

4
σ
µ

αβ
σνγδ f †

iα f †
jγ f jδ fiβ , (6)

which is the starting point for an analysis of the spin model within the fermionic FRG frame-
work. Note that we do not address the half-filling constraint of the fermionization rule ex-
plicitly, since any unphysical state – i.e., doubly occupied states or vacant states – leads to
an effective local defect of zero spin, which is assumed to be energetically suppressed at low
temperatures. An explicit construction to enforce the constraint is in principle possible by
introducing an imaginary chemical potential [55], but it would dramatically lower the sym-
metries of the Hamiltonian and is therefore computationally unfavorable. Nonetheless, the
fulfillment of the half-filling constraint can easily be checked a posteriori by verifying that
adding a local interaction term SiSi with a negative prefactor to the model does not alter its
ground state [20,56]. Such a term simply adds an energetic bias which locally favors non-zero
spin values, i.e. the physical part of the extended pseudofermion Hilbert space.

The pseudofermion Hamiltonian in Eq. (6) is special in the sense that it does not contain a
quadratic term in the pseudofermion operators. Its non-interacting (bare) propagator is there-
fore simply given by the inverse Matsubara frequency G0(ω) = (iω)−1, which results from the
construction of the functional integral for the pseudofermionic theory. Upon including interac-
tions, the full propagator would be dressed with self-energy corrections, G(ω) = (iω−Σ(ω))−1,
where Σ(ω) is the (Matsubara) frequency-dependent self-energy. While in the most general
case the self-energy corrections could also depend on the spin configuration and lattice sites, it
has been demonstrated that for time-reversal invariant systems of the general form as given in
Eq. (1), the self-energy is diagonal in all quantum numbers and depends only on the Matsubara
frequency [48]. We hence suppress lattice site and spin indices in our notation.

We now follow the well established route to set up (pseudo)fermionic FRG flow equations
detailed in Refs. [48,50,57]. The first step of this procedure is to introduce a renormalization
group cutoff Λ to the bare propagator, which satisfies the two limiting cases

�

GΛ0 (ω)→ 0 for Λ→∞
GΛ0 (ω)→ G0(ω) for Λ→ 0

, (7)

where GΛ0 (ω) denotes the cutoff-dependent bare propagator. Within the pf-FRG approach,
the cutoff function is chosen to be a sharp multiplicative cutoff in the frequency dependence,
yielding the cutoff-dependent bare propagator

GΛ0 (ω) =
θ (|ω| −Λ)

iω
. (8)

Setting out from this choice for a cutoff, we can now address the formulation of FRG
flow equations, which describe the change of the pseudofermionic 1-line irreducible n-particle
interaction vertices under infinitesimal variations of the cutoff Λ. The flow equations form an
exact mathematical connection between the maximally simplified model at infinite cutoff and
the physically meaningful model of interest at vanishing cutoff. However, the structure of the
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flow equations is an infinite hierarchy of coupled integro-differential equations, which cannot
be solved exactly since the flow of the n-particle vertex generally depends on terms up to order
n + 1. It is therefore necessary to perform an approximation and truncate the hierarchy of
differential equations at a finite order. We employ the so-called Katanin truncation [58] which
yields a closed set of flow equations with terms up to n= 2. The truncated flow equations are
an approximation for the flow of the (truncated) effective action

ΓΛ
�

φ̄,φ
�

=
∑

1

ΣΛ(ω1)φ̄1φ1 +
1
4

∑

1′,2′,1,2

ΓΛ(1′, 2′; 1, 2)φ̄1′φ̄2′φ2φ1 , (9)

which is the generating functional for the 1-line irreducible vertices via fermionic source
fields φ̄,φ and contains the cutoff-dependent self-energy (one-particle vertex) ΣΛ(ω1) and
the cutoff-dependent one-line irreducible two-particle vertex ΓΛ(1′, 2′; 1, 2), where the integer
indices k resemble composite indices k = (ik,ωk,αk) of lattice site, Matsubara frequency,
and spin index, respectively. The effective action can be related to the usual generating
functional for n-point correlation functions for the purpose of calculating physical observ-
ables [18,19,50,59].

The two vertex functions are computed according to the fermionic flow equations within
the Katanin truncation, given by [18,50,60]

d
dΛ
ΣΛ(ω1) = −

1
β

∑

2

ΓΛ(1, 2;1, 2)SΛ(ω2) , (10)

where on the left hand side of the equation the dependence on the lattice site i1 and spin index
α1 is suppressed according to our notation convention, and

d
dΛ
ΓΛ(1′, 2′; 1, 2) =

1
β

∑

3,4

�

ΓΛ(1′, 2′; 3, 4)ΓΛ(3,4; 1,2)

− ΓΛ(1′, 4; 1, 3)ΓΛ(3,2′; 4, 2)− (3↔ 4)

+ ΓΛ(2′, 4; 1, 3)ΓΛ(3,1′; 4, 2) + (3↔ 4)
�

× GΛ(ω3)S
Λ
kat(ω4) , (11)

where the prefactors 1
β , with β being the inverse temperature, arise from internal Matsubara

summations. In the notation above, we further introduced the single-scale propagator

SΛ(ω) =
�

GΛ(ω)
�2 d

dΛ

�

GΛ0 (ω)
�−1
=
δ (|ω| −Λ)
iω−ΣΛ(ω)

(12)

and the Katanin modified single-scale propagator

SΛkat(ω) = −
d

dΛ
GΛ(ω) = SΛ(ω)−

�

GΛ(ω)
�2 d

dΛ
ΣΛ(ω) . (13)

The initial conditions for the flow equations Eqs. (10) and (11) at infinite cutoff Λ→∞ are
simply given by the bare interactions as specified in the pseudofermionic Hamiltonian Eq. (6)
after replacing pseudofermion operators with Grassmann fields [18,50,60], and amount to

ΣΛ→∞(ω) = 0 and ΓΛ→∞(1′, 2′; 1, 2) =
Jµνi1 i2

4
σµα1′α1

σνα2′α2
. (14)

In the following discussion, and when attempting a numerical solution of the flow equations,
we assume that the equations are formulated at zero temperature, i.e., the Matsubara frequen-
cies become continuous and their summation is replaced by an integral; the prefactor of 1

β is

replaced by 1
2π , accordingly.
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With the general set of pseudofermionic flow equations at hand, it is now of paramount
importance to utilize symmetries of the underlying model in order to make it computationally
tractable. It has been demonstrated in Ref. [48], that for the general time-reversal invariant
Hamiltonian Eq. (1) the self-energy is a purely imaginary function which is antisymmetric in
its frequency argument, i.e.,

ΣΛ(ω) ∈ iR ,

ΣΛ(ω) = −ΣΛ(−ω) . (15)

Furthermore, it was shown that the two-particle vertex can be efficiently parametrized by a
set of 16 basis functions Γµν,Λ

i1 i2
(s, t, u), with µ,ν= 0, . . . , 3, as

ΓΛ(1′, 2′; 1, 2) = Γµν,Λ
i1 i2
(s, t, u)σµα1′α1

σνα2′α2
δi1′ i1δi2′ i2δω1′+ω2′ ,ω1+ω2

− (1′↔ 2′) , (16)

making use of the three bosonic transfer frequencies

s =ω1′ +ω2′ ,

t =ω1′ −ω1 ,

u=ω′1 −ω2 , (17)

and expressing the spin dependence in the basis of Pauli matrices σ1, σ2, and σ3, in con-
junction with the identity matrix σ0. Moreover, the basis functions are constrained by the
symmetry relations

Γ
µν,Λ
i1 i2
(s, t, u) ∈

�

R if ξ(µ)ξ(ν) = 1
iR if ξ(µ)ξ(ν) = −1

,

Γ
µν,Λ
i1 i2
(s, t, u) = Γ νµ,Λ

i2 i1
(−s, t, u) ,

Γ
µν,Λ
i1 i2
(s, t, u) = ξ(µ)ξ(ν)Γµν,Λ

i1 i2
(s,−t, u) ,

Γ
µν,Λ
i1 i2
(s, t, u) = ξ(µ)ξ(ν)Γ νµ,Λ

i2 i1
(s, t,−u) ,

Γ
µν,Λ
i1 i2
(s, t, u) = −ξ(ν)Γµν,Λ

i1 i2
(u, t, s) , (18)

with the sign function

ξ(µ) =

�

+1 if µ= 0
−1 otherwise

. (19)

Inserting the above parametrization into the general flow equations Eq. (10) and (11) allows
us to explicitly evaluate internal summations over spin indices and contract Pauli matrices to
recover a separate set of flow equations for each basis function, assuming the schematic form

d
dΛ
ΣΛ(ω) = . . . and

d
dΛ
Γ
µν,Λ
i1 i2
(s, t, u) = . . . . (20)

Comparison of the vertex parametrization with the general pseudofermionic initial conditions,
Eq. (14), shows that nine out of the 16 basis functions for the two-particle vertex may assume
finite values in the limit of infinite cutoff:

ΣΛ→∞(ω) = 0 and Γ
µν,Λ→∞
i1 i2

(s, t, u) =
Jµνi1 i2

4
, (21)

for µ,ν= 1, 2,3≡ x , y, z, and all two-particle basis functions with µ= 0 or ν= 0 have strictly
zero initial value.
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Since the resulting flow equations Eq. (20) upon inserting the full vertex parametrization
are exceedingly long – e.g., expanding all two-particle vertices in the general flow equation
Eq. (11) in terms of their 16 basis functions leads to 1280 terms with only few cancellations –
we refer the reader to Ref. [50] for a full presentation. Here, we revert to a more instructive
and slightly less explicit parametrization where we only focus on the structure of the Matsubara
frequency and lattice site dependence, but do not resolve the spin indices explicitly. For this
purpose, we parametrize the two-particle vertex as

ΓΛ(1′, 2′; 1, 2) = Γα1′α2′ ;α1α2,Λ
i1 i2

(s, t, u)δi1′ i1δi2′ i2δω1′+ω2′ ,ω1+ω2
− (1′↔ 2′) (22)

and obtain the flow equation for the self-energy

d
dΛ
ΣΛ(ω1) = −

1
2π

∑

α2

∑

ω2

�∑

j

Γ
α1α2;α1α2,Λ
i1 j (ω1 +ω2, 0,ω1 −ω2)

− Γα2α1;α1α2,Λ
i1 i1

(ω1 +ω2,ω2 −ω1, 0)
�

SΛ(ω2) (23)

as well as the flow equation for the two-particle vertex

d
dΛ
Γ
α1′α2′ ;α1α2,Λ
i1 i2

(s, t, u) =
1

2π

∑

α3,α4

∑

ω

�

�

GΛ(ω)SΛkat(s−ω) + GΛ(s−ω)SΛkat(ω)
�

× Γα1′α2′ ;α3α4,Λ
i1 i2

(s,ω1′ −ω,ω−ω2′)Γ
α3α4;α1α2,Λ
i1 i2

(s,ω−ω1,ω−ω2)

+
�

GΛ(ω)SΛkat(ω− t) + GΛ(ω− t)SΛkat(ω)
�

×
�

−
∑

j

Γ
α1′α4;α1α3,Λ
i1 j (ω1 +ω, t,ω1′ −ω)Γ

α3α2′ ;α4α2,Λ
ji2

(ω+ω2′ , t,ω−ω2)

+ Γα1′α4;α1α3,Λ
i1 i2

(ω1 +ω, t,ω1′ −ω)Γ
α2′α3;α4α2,Λ
i2 i2

(ω2′ +ω,ω2 −ω,−t)

+ Γα4α1′ ;α1α3,Λ
i1 i1

(ω1 +ω,ω−ω1′ ,−t)Γα3α2′ ;α4α2,Λ
i1 i2

(ω+ω2′ , t,ω−ω2)
�

+
�

GΛ(ω)SΛkat(u+ω) + GΛ(u+ω)SΛkat(ω)
�

× Γα4α2′ ;α1α3,Λ
i1 i2

(ω1 +ω,ω−ω2′ , u)Γα1′α3;α4α2,Λ
i1 i2

(ω1′ +ω,ω2 −ω, u)
�

. (24)

In order to obtain the final result, as schematically shown in Eq. (20), one would need to
perform the final expansion of the two-point vertex function in its spin indices, expressing it
in terms of its 16 basis functions

Γ
α1′α2′ ;α1α2,Λ
i1 i2

(s, t, u) = Γµν,Λ
i1 i2
(s, t, u)σµα1′α1

σνα2′α2
. (25)

Doing so generates a large number of terms in the flow equations which mix contributions be-
tween the different basis functions, but it does not alter the algebraic structure of the frequency
and lattice site dependence. In their current form, therefore, the flow equations already reveal
that the terms which contribute to the evolution of the two-particle vertex, cf. Eq. (24), can be
grouped into three channels, each containing propagator functions which depend only on one
of the three transfer frequencies s, t or u. In the literature, these channels are often referred
to as particle-particle scattering, particle-hole forward scattering, and particle-hole exchange
scattering, respectively [19, 51]. The distinction between particle-particle and particle-hole
channels thereby refers to the different relative orientations of intermediate propagator lines
of the virtual states. The latter becomes more transparent in a diagrammatic representation,
which is set up by identifying

Γ
α1′α2′ ;α1α2,Λ
i1 i2

(s, t, u)∼
w2i2 α2, , w2′i2 α2′, ,

w1i1 α1, , w1′i1 α1′, ,
. (26)
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In the diagrammatic representation we implicitly assume conservation of Matsubara frequen-
cies as well as conservation of the lattice site index along solid lines. With these conventions,
the flow equations Eq. (23) and (24) are represented as (with external indices suppressed)

d

dΛ
ΣΛ(ω) = − + (27)

and
d

dΛ
= ++ +− , (28)

where a single slashed propagator line denotes the single-scale propagator SΛ(ω) and the
slashed propagator pair should be read as GΛ(ω1)SΛkat(ω2) + GΛ(ω2)SΛkat(ω1). The diagram-
matic representation of terms is in the same order as in Eqs. (23) and (24). The first term in
the flow equation for the two-particle vertex is the particle-particle scattering channel. The
second, third, and fourth terms resemble particle-hole forward scattering, which typically be-
comes large when the transfer frequency t = ω1′ −ω1 is small. If, on the other hand, the
exchange u = ω1′ −ω2 is small, the particle-hole exchange scattering (last term) tends to be
dominant.

In the bigger picture, when interpreting the pseudofermionic interactions in light of the
original spin model they represent, special focus is on the first term of Eq. (27) and the second
term of Eq. (28). Those terms involve closed loops of propagator lines, which means they
imply a summation over all lattice sites. As such, they are capable of capturing long-range
correlations in the lattice spin model. Indeed, it has been demonstrated that these channels
are the leading order contributions in the large-S limit of generalized spin-S models, where
magnetic order is known to prevail [20].

Attempting to solve the flow equations for a concrete spin model in general requires one
to fully resolve the dependence on the spin indices by virtue of the parametrization given in
Eq. (25). While the spin interactions in the most general time-reversal invariant Hamiltonian
Eq. (1) lead to a large number of terms in the flow equations, its complexity can be reduced
for spin models with higher symmetry. For Heisenberg models with SU(2) spin symmetry,
for example, it is sufficient to consider a parametrization of the two-particle vertex under the
constraints Γ 11,Λ

i1 i2
(s, t, u) = Γ 22,Λ

i1 i2
(s, t, u) = Γ 33,Λ

i1 i2
(s, t, u), and all basis functions with µ 6= ν van-

ish [18]. Similarly, for spin models with only diagonal spin interactions, e.g. the Kitaev model
or XXZ-type models, only basis functions with µ= ν are nonzero [57]. The flow equations for
all three cases – SU(2) models, Kitaev-like models, and general time-reversal invariant mod-
els – are explicitly implemented in the SpinParser code and thus allow for efficient numerical
computations.

For completeness, we mention that further simplification of the two-particle vertex and its
parametrization may be possible, subject to the specifics of the underlying spin interactions
and the lattice geometry. Most importantly, the dependence of the basis functions Γµν,Λ

i1 i2
(s, t, u)

on the two lattice sites i1 and i2 can be reduced to effectively depend only a single lattice
site. To this end, we employ lattice symmetries T which map the tuple (i1, i2) onto the a
transformed tuple (iref, T (i2)), where iref is a fixed reference site and its appearance in the
flow equations can be suppressed. It is then sufficient to only compute any components of the
basis functions relative to the reference site, reducing the computational cost by a factor equal
to the total number of lattice sites NL . Additional point group symmetries, which leave the
reference site invariant, can further constrain the set of lattice sites which i2 may be mapped
to; the implementation of lattice symmetries is described in more details in Sec. 4.1.

Once the set of flow equations has been solved numerically, we would like to extract phys-
ical observables. To this end, the effective action Eq. (9), which is the generating functional
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for one-line irreducible diagrams, can be related to the generating functional of connected
diagrams [59] – the essential ingredients for computing elastic two-spin correlations, i.e. the
ω= 0 component of the dynamic correlation function Eq. (4), of the form

χ
µν,Λ
i j =

β
∫

0

dτ〈Sµi (τ)S
ν
j (0)〉 , (29)

where τ denotes the imaginary time resulting from a functional integral construction. On the
order of the two-particle vertex truncation, the expression for the correlation function is given
by [18]

χ
µν,Λ
i j =−

1
8π

∫

dω1GΛ(ω1)
2 tr (σµσν)

−
1

16π2

∫

dω1dω2GΛ(ω1)
2GΛ(ω2)

2σµα1α1′
σνα2α2′

× ΓΛ ((i,ω1,α1′), ( j,ω2,α2′); (i,ω1,α1), ( j,ω2,α2)) , (30)

where µ,ν = x , y, z and summation over spin indices is implicit; for completeness, we also
allow µ = ν = 0 in the definition, yielding the density-density correlation, with σ0 being the
identity matrix. Fourier transformation of the sum over spin-diagonal components obtains the
momentum resolved spin correlations

χΛ(k) =
1

NL

∑

i, j

∑

µ=x ,y,z

eik(ri−r j)χµµ,Λ
i j , (31)

where ri is the position of the i-th lattice site and the normalization is by the number of lattice
sites NL which the summations are performed over. We loosely refer to χΛ(k) as the structure
factor, although one should keep in mind that the static structure factor (with no explicit
dependence on time or frequency) in the literature is typically defined via the equal-time spin
correlations, whereas our definition is based on the elastic spin correlations. The dominant
magnetic ordering vector kmax, if present, can be inferred from the maximum of the structure
factor, the peak susceptibility χΛmax =maxkχ

Λ(k).
Note that the expression for the peak susceptibility χΛmax depends on the cutoff parameter

Λ, but only the limit Λ→ 0 resembles the physical solution. In practice, however, it is imper-
ative to trace the full evolution of the peak susceptibility as a function of Λ: Since we make
use of a number of symmetries in the parametrization of the effective action (including time-
reversal symmetry and – depending on the model under study – spin rotational symmetry),
the flow equations are not suited to describe configurations which would break these sym-
metries. Consequently, whenever one studies spin models by means of the pf-FRG approach,
whose transition into their low-temperature phases would imply the spontaneous breaking of
symmetries, one typically observes a breakdown of the smooth RG flow, which manifests as
a divergence or a kink in Λ-dependence of the spin correlations [18, 19]. This behavior is
qualitatively different from the one in parameter regimes in which the ground state of the spin
model preserves all symmetries; in the latter case, the Λ-dependence of the spin correlations
remains smooth. The difference between the two allows us to map out phase diagrams with
respect to magnetically ordered ground states and symmetry-preserving quantum spin liquid
ground states.

We illustrate the foregoing discussion of the flow breakdown with an example. Consider a
spin model of nearest-neighbor Heisenberg interactions on the kagome lattice, which is gov-
erned by the Hamiltonian

H = J
∑

〈i, j〉

SiS j , (32)
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Figure 1: Renormalization group flow of the magnetic correlations for (a) the
kagome Heisenberg antiferromagnet and (b) the kagome Heisenberg ferromagnet.
The antiferromagnet shows a smooth evolution of the susceptibility down to lowest
cutoff, indicative of the absence of spontaneous symmetry breaking. In the ferro-
magnetic example, the flow displays a kink (the breakdown of the smooth flow) near
Λc ≈ 0.35, which signals the onset of ferromagnetic order. The insets show the struc-
ture factor across the extended Brillouin zone, with the dashed lines denoting the
first Brillouin zone, plotted at (a) Λ= 0 and (b) Λ= Λc . The color code is separately
normalized for each panel, ranging from low intensity (dark blue) to high intensity
(white).

where the sum runs over nearest neighbor pairs of lattice sites i and j. Two decisively dif-
ferent scenarios are possible, depending on the choice of the interaction constant J . If we
choose antiferromagnetic interactions, J > 0, the model becomes the kagome Heisenberg an-
tiferromagnet, a paradigmatic model of frustrated quantum magnetism which leads to a spin
liquid ground state. As such, the flow of the peak susceptibility is expected to remain smooth
down to lowest cutoff, see Fig. 1a. Conversely, if we choose J < 0, the resulting model is a
simple ferromagnet, which harbors a ground state with broken spin-rotational symmetry. As a
manifestation of the broken symmetry, we observe a kink in the flow of the peak susceptibility
at a finite critical RG scale Λc , see Fig. 1b. While the solution of the flow equations for Λ< Λc
is unphysical due to the occurrence of the breakdown, denying us exploration of the ordered
phase itself, we can inspect the structure factor just above the critical scale Λc , where the solu-
tion of the flow equations is still valid. Already at this finite RG scale we observe the buildup
of dominant correlations at the Brillouin zone center, see the inset of Fig. 1b, which indicates
incipient ferromagnetic order. In this manner, facilitating the pf-FRG approach, it is possible
to explore the magnetic ordering tendencies and structure factors for a plethora of models in
quantum magnetism.

4 Implementation details

In the previous section, we have outlined the concept of the pf-FRG algorithm and its ap-
plication to a general class of quantum spin models, which are captured by the microscopic
Hamiltonian Eq. (1). In this section, we provide details about the specific implementation of
the pf-FRG algorithm in the SpinParser software. Aspects of the implementation, which affect
the numerical performance and precision of the computation, can be broadly summarized into
three groups: (i) The vertex functionsΣ(ω) and Γµν,Λ

i1 i2
(s, t, u), as defined by Eqs. (15) and (18),

depend on lattice site indices, which are defined on an infinite lattice graph; similarly, the fre-
quency arguments are continuous and can assume unbounded values. The dependence of the
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vertex functions on the lattice site and frequency arguments must therefore be restricted to a
finite set of numbers. (ii) The solution of the flow equations is performed numerically, imply-
ing that the cutoff parameter Λ in the underlying differential equations Eq. (20) can only be
incremented by finite amounts, and its discretization impacts the numerical precision of the
solution. (iii) Large-scale calculations require an efficient parallelization scheme of the cal-
culations, which needs to be devised and implemented. We comment on aspects of all three
groups individually in the following subsections.

4.1 Lattice truncation and symmetry analysis

Microscopic quantum spin models are typically defined on an infinite lattice graph. The single-
particle vertex function Σ(ω), which implicitly depends also on the suppressed lattice site in-
dex i1 and spin index α1, was shown to be independent of the lattice site index – i.e., for its
calculation, we can simply fix the index i1 to an (arbitrary) reference site, say, iref [48]. Unfor-
tunately, the situation is more complicated for the two-particle vertex function Γµν,Λ

i1 i2
(s, t, u),

whose dependence on two lattice site indices is more intricate. However, in analogy to the
single-particle vertex function where we removed the dependence on one lattice site index
by fixing a reference site, we argue in the following that the dependence of the two-particle
vertex function on two lattice sites can effectively be reduced to depend only on a single lattice
site, which may further be constrained by additional lattice symmetries.

We shall begin by fixing a reference site iref in the lattice. Further, we shall assume that all
sites in the lattice are equivalent1 (and the SpinParser software is, in fact, only applicable to
lattices for which this assumption is true.) That assumption implies that for any lattice site i1 in
the lattice, there exists a transformation T which maps i1 to our reference site iref. For lattices
with a monatomic basis, such transformations would simply be translations by a multiple of
the primitive lattice vectors. For lattices with a nontrivial basis, however, the transformations
become more complicated and may involve rotations or mirror operations, since they need to
provide mappings between the different basis sites (which, typically, are not simple transla-
tions.) While lattice symmetries in other contexts are often straightforwardly discussed as the
mapping of one lattice site to another, here we are interested in the simultaneous action of
a lattice symmetry transformation on a pair of lattice sites: Given that the transformation T
maps i1 onto the reference site iref, i.e. T (i1) = iref, we also require knowledge about its action
on a second lattice site i2 – which is going to be mapped to T (i2). Such transformation of a
two-site object is illustrated in Fig. 2a. On the level of the basis functions of the two-particle
vertex, it allows us to establish the mapping

Γ
µν,Λ
i1 i2
(s, t, u) 7→ Γµν,Λ

irefT (i2)
(s, t, u) , (33)

where the two vertex values must be equivalent by symmetry, see also the discussions in
Refs. [48, 50]. Since we can fix iref arbitrarily, the set of all transformations T (allowing to
map any site i1 onto the reference site) effectively reduces the dependence of the vertex basis
functions on two lattice sites to just a single lattice site index.

Next, we need to reduce the dependence of the vertex function Γµν,Λ
irefT (i2)

(s, t, u) on the a
priori infinite set of lattice sites T (i2) to a finite set, which is numerically tractable. To this
end, we perform a truncation of the vertex function: If the distance between the lattice sites
iref and T (i2) is greater than a certain truncation range L, we set the vertex value to zero, i.e.,

Γ
µν,Λ
irefT (i2)

(s, t, u) =

�

Γ
µν,Λ
irefT (i2)

(s, t, u) if ‖T (i2), iref‖b ≤ L
0 else

, (34)

1More generally, every site in the lattice spin model must be equivalent under joint lattice transformations and
permutation of spin components.
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T(i1)i2

i1

T(i2)

iref iref

(a) (b)

Figure 2: Lattice truncation and symmetry relations. (a) Lattice symmetry trans-
formation T , which maps the two lattice sites i1 and i2 to a fixed reference site
iref = T (i1) and T (i2), respectively. (b) Truncation of a two-particle vertex function.
The lattice truncation around lattice site iref is illustrated by the gray shaded area
for truncation range L = 3. Within the truncation range, which contains N total

s = 19
lattice sites, vertices need to be parametrized only with respect to the Ns = 5 lat-
tice sites colored in red, since they form the (symmetry-)irreducible basis set for the
lattice site dependence of the two-particle vertex functions.

where ‖·, ·‖b is the norm which measures the distance of two lattice sites by the minimal num-
ber of lattice bonds it takes to connect the sites. Thereby we guarantee that all finite vertex
functions are spanned by a finite set of N total

s lattice sites within the truncation range, which
we can represent numerically. We emphasize that this vertex truncation does not resemble
a calculation on a finite lattice (neither with open nor with periodic boundary conditions),
since it does not introduce an artificial boundary to the system. Rather, it can be interpreted
analogously to a series expansion in the lattice site: Upon increasing the truncation range,
the precision of the calculation is systematically increased and eventually the result converges
to the thermodynamic limit [50]. Since the underlying lattice geometry itself always remains
genuinely infinite, this approach is suitable also for spin models with ground states of incom-
mensurate magnetic order [20,32,46].

But we can restrict the representation of vertex functions even further. For a given pair of
lattice sites i1 and i2, there may exist multiple transformations T1, . . . , Tn which map i1 7→ iref
but have different T1(i2) 6= . . . 6= Tn(i2). In other words, there exist point group transfor-
mations U which leave iref invariant, and which can be exploited to define an irreducible set
U(T (i2)), for any i2 within the truncation range, which spans the minimal number of vertex
basis functions, see Fig. 2b. These lattice transformations are subject to some constraints: Not
all lattice spin models necessarily preserve the full symmetry of the underlying lattice. The
interaction terms in the Kitaev honeycomb model [6], for example, break the three-fold ro-
tation symmetry of the underlying lattice. Such interactions are common in many models of
current interest, so in order to exploit an even larger class of symmetries, we lift the point
group transformation U to act on the product space of lattice site indices and spin indices, i.e.,
in addition to performing a lattice transformation, we may also perform a spin transformation.
For an efficient numerical implementation, we restrict the spin transformation to be a global
permutation of the three spin components x , y , and z. This yields the final symmetry relation

Γ
µν,Λ
i1 i2
(s, t, u) = Γ U(µ)U(ν),Λ

irefU(T (i2))
(s, t, u) , (35)

where U is chosen such that the number of lattice sites Ns in the image set of U ◦ T for any
lattice sites i1 and i2 is as small as possible. It is thus sufficient to numerically parametrize
the vertex functions only over the Ns lattice sites which span the irreducible image of U ◦ T
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Figure 3: Lattice geometry and computational complexity. The compute time tstep
is measured for a single cutoff step in the solution of the flow equations on vari-
ous lattice geometries (three-dimensional cubic and diamond lattice, as well as two-
dimensional honeycomb, kagome, and square lattice). For each lattice, different
truncation ranges L = 3, . . . , 12 are considered2. Timing is measured on Intel Xeon
Phi 7250-F Knights Landing processors, utilizing 8 cores per simulation. (a) Scaling
as a function of the number of parametrized sites tstep ∼ Nαs shows deviations be-
tween two-dimensional (α = 1.32, dotted line) and three-dimensional (α = 1.98,
dashed line) lattices. (b) Plotted as a function of the total number of lattice sites
within the truncation range N total

s , slight deviations between the scaling behavior of
the different lattice geometries become visible, depending on the degree of symmetry
inherent to the lattice.

and obtain all remaining components of the vertex functions via the symmetry relation above.
However, identifying the full set of symmetry transformations requires a lot of work, and they
are custom tailored to the specific choice of the lattice spin model.

The SpinParser software automatically performs the search for symmetry transformations
to minimize Ns and it parametrizes the vertex basis functions accordingly. The search algo-
rithm for lattice symmetries relies on an internal real-space representation of the lattice, which
is constructed up to an absolute precision of ε = 10−5; for the symmetries to be detected cor-
rectly, it is thus necessary to define the lattice geometry (primitive lattice vectors and basis site
positions) at a precision of ε or higher (cf. Sec. 5.2). In order to achieve good performance
at runtime, the symmetry calculations are performed only once at the beginning of the code
execution and the results are then tabulated for later use throughout the solution of the flow
equations. In particular, we also tabulate lattice sites U(T ( j)) (and associated symmetry trans-
formations) on which products of two vertex functions of the form

∑

j Γi1 jΓ ji2 (spin indices and
frequency arguments suppressed) assume finite values, i.e. j lies within the truncation range
around both i1 and i2. Such lattice summations appear in the flow equations for the two-
particle vertex function, cf. Eq. (24), and make up a significant share of the computational
workload.

With the tabulation of the abovementioned lattice summations in place, the computational
complexity of the expression scales only with the number of irreducible lattice sites Ns, instead
of the total number of lattice sites within the truncation range, N total

s . In order to demonstrate
this numerically, we simulate a Heisenberg antiferromagnet (with the energy scale of the in-
teraction constant set to J = 1) on different lattice geometries with various truncation ranges
L = 3, . . . , 12. As shown in Fig. 3a, for three-dimensional lattice geometries (cubic lattice
and diamond lattice) the scaling of the computing time is approximately tstep ∼ Nαs , with
α = 1.98. For the two-dimensional lattices (honeycomb lattice, kagome lattice, and square

2For the benchmark, we consider nearest-neighbor Heisenberg models with interaction constant J = 1.0 on
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lattice) and the investigated truncation ranges, the scaling appears softer, α = 1.32. How-
ever, it is expected that for larger truncation ranges, the scaling eventually approaches α= 2:
For two-dimensional lattices, the aforementioned tabulated lattice summations

∑

j Γi1 jΓ ji2 typ-
ically contain fewer terms than their three-dimensional analogues; this implies that subleading
terms, which scale as α= 1, have more relative weight and the leading-order scaling α= 2 is
only observed at larger overall lattice sizes.

For comparison, we plot the same benchmark calculations as a function of the total number
of lattice sites N total

s within the truncation range, see Fig. 3b. While the number of parametrized
lattice sites only goes up to Ns = 103 (diamond lattice at L = 12) for the truncation ranges
considered here, the total number of lattice sites is up to N total

s = 2625 (cubic lattice at L = 12),
highlighting the great simplification of the computational problem achieved by exploiting lat-
tice symmetries. At the same time, the plot visualizes the dependence of the computational
complexity on the details of the underlying lattice graph: For a fixed number of lattice sites
N total

s , the actual computing time tstep can vary significantly between the different lattices,
depending on the degree of symmetry in the lattice.

4.2 Frequency discretization

One key ingredient to solving the pf-FRG flow equations is the numerical treatment of the
underlying frequency structure. The single-particle vertex ΣΛ(ω) is parametrized by a single
frequency ω, and each basis function Γµν,Λ

i1 i2
(s, t, u) of the two-particle vertex is parametrized

by a set of three bosonic transfer frequencies s, t, and u. While the flow equations are for-
mally derived at zero temperature, where frequency dependence is a continuous quantity,
their numerical solution – in practice – can only be performed on a discrete support space
of a finite number of frequency values. We therefore define a discrete mesh of Nω positive
frequency points ω1, . . . ,ωNω , which are typically chosen logarithmically dense around zero
(but in principle can be chosen arbitrarily, see Sec. 5.1.) The full (discretized) frequency
space is then spanned symmetrically around zero by the N total

ω = 2Nω supporting mesh points
−ωNω , . . . ,−ω1,ω1, . . . ,ωNω . It would now be straight-forward to define the single-particle
vertex function ΣΛ(ω) by assigning to every frequency value ω the function value ΣΛ(ωn) at
the mesh pointωn closest toω; and by assigning to every tuple of transfer frequencies (s, t, u)
the value of two-particle vertex basis functions Γµν,Λ

i1 i2
(ωns

,ωnt
,ωnu

) at the nearest mesh points
(ωns

,ωnt
,ωnu

). However, in the following, we shall formulate a refined scheme in order to
reduce the computational complexity as well as reduce the numerical error which results from
the discretization procedure.

First, we exploit the symmetry relation Eq. (15), which defines anti-symmetry of the single-
particle vertex function ΣΛ(ω) in its frequency argument ω. With this symmetry transfor-
mation in place, it is sufficient to model the vertex function only in the positive frequency
half-space with ω> 0; all remaining function values at negative frequency values are read off
from their symmetry equivalents. Next, we need to specify the procedure to retrieve the vertex
function at arbitrary positive frequency values ω, which do not necessarily coincide with one
of the discrete frequency mesh points. Any vertex value is therefore obtained within a linear
interpolation scheme on the discrete frequency mesh. To this end, for any frequency value ω,
after mapping it onto the positive half-space, we determine the nearest lesser discrete mesh
pointω< and the nearest greater frequency pointω>. The interpolated vertex function is then

various lattice geometries and truncation ranges. We employ the numerical core optimized for SU(2) symmetric
spin models. Frequencies are discretized logarithmically between ω = 0.005 and ω = 50.0 with Nω = 64. The
cutoff is initialized at Λ = 50.0 and subsequently integrated down to 0.1 with a multiplicative step size of 0.95.
Timing is recorded and averaged over the next 5 integration steps for Λ < 0.1. Note that for some non-frustrated
lattice geometries, this cutoff may lie below a critical Λc , such that the calculation loses its physical meaning; the
technical benchmark, however, remains valid.
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calculated as
ΣΛ(ω) =

ω>−ω
ω>−ω<

ΣΛ(ω<) +
ω−ω<
ω>−ω<

ΣΛ(ω>) . (36)

In case the desired frequency point, at which the vertex function is evaluated, is lesser (greater)
than the minimum (maximum) discrete mesh point, the vertex is extrapolated as a constant
value which coincides with the function value at the minimum (maximum) discrete mesh
point.

The two-particle vertex basis functions Γµν,Λ
i1 i2
(s, t, u), which depend on three independent

frequency arguments, are treated in close analogy: We only parametrize the basis functions

on the approximately
N3

w
2 frequency points in the positive octant with s ≥ 0, t ≥ 0, u ≥ 0, and

s ≥ u, since all remaining function values can be obtained by invoking the symmetry relations
Eq. (18), which separately guarantee (anti)-symmetry in each of the three transfer frequen-
cies, as well as an exchange relation between the two transfer frequencies s and u. Within this
parametrized octant, function values for arbitrary transfer frequency tuples (s, t, u) are ob-
tained by linear interpolation between the nearest lesser discrete frequency points (s<, t<, u<)
in every dimension and the nearest greater frequency points (s>, t>, u>), respectively. The
interpolation in three-dimensional frequency space is performed as

Γ
µν,Λ
i1 i2
(s, t, u) =

u>−u
u>−u<

�
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s>−s<
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Γ
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i1 i2
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�
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Γ
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(s<, t>, u<) +
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Γ
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�

�
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t>− t
t>− t<
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s>−s<

Γ
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�

+
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t>− t<
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Γ
µν,Λ
i1 i2
(s<, t>, u>) +

s−s<
s>−s<

Γ
µν,Λ
i1 i2
(s>, t>, u>)

�

�

. (37)

Similar to the treatment of the single-particle vertex, we perform a constant extrapolation
in every dimension if a transfer frequency lies outside the region spanned by the discrete
frequency mesh.

Typically, throughout the solution of the pf-FRG flow equations, we do not only access the
vertex functions at isolated frequency points. Rather, – especially in the calculation of the two-
particle vertex function – we need to perform one-dimensional line integrals embedded in the
three-dimensional frequency parameter space, cf. Eq. (24). When these integrals of the form
∫

f (ω)dω are evaluated numerically for an arbitrary integrand function f (ω), further approx-
imations are required; in the SpinParser code, we employ a trapezoidal integration scheme.
That is, f (ω) is evaluated at a sequence of discrete points ω1,ω2, . . . and the integral is ap-
proximated by a sum over the trapezoids spanned by the integrand values f (ω1), f (ω2), . . . ,
see Fig. 4a.

The discrete points ω1,ω2, . . . are chose to coincide with the frequency mesh points
ω1, . . . ,ωNω on which the vertex functions are defined. In this way, increasing the overall
number of frequency points Nω coherently increases the numerical precision of the calcula-
tion [50].

Since the integrand typically is a complicated expression which involves multiple evalu-
ations of the vertex functions (cf. the flow equation for the two-particle vertex Eq. (24)), it
is crucial that the frequency interpolations of the vertex functions are performed efficiently.
For reaching a satisfactory performance in accessing two-particle vertex values, we note that
throughout the solution of the flow equations, it is often necessary to retrieve vertex values
Γ
µν,Λ
i1 i2
(s, t, u) of different basis components µ,ν and lattice sites i1, i2 (especially when an in-

ternal lattice summation is performed, see Sec. 4.1) for a constant set of transfer frequency
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Figure 4: Frequency integration and computational complexity. (a) Frequency in-
tegrals in the flow equations are approximated by a trapezoidal integration scheme,
where over a given integration domain (indicated in red) the integrand is approx-
imated by trapezoidal segments (gray shaded areas). (b) The compute time for a
single cutoff step in the solution of the flow equations scales as tstep ∼ Nαω, with
α = 3.98 (dashed line). Data shown is on the kagome lattice with truncation range
L = 10 for a Heisenberg antiferromagnet3. The timing is measured on Intel Xeon Phi
7250-F Knights Landing processors, utilizing 8 cores per simulation.

arguments s, t, and u. In this situation, a large share of the work associated with a vertex
interpolation only needs to be performed once, and the interpolation weights

s>−s
s>−s<

,
s−s<

s>−s<
,

t>− t
t>− t<

,
t− t<

t>− t<
,

u>−u
u>−u<

,
u−u<

u>−u<
, (38)

as well as the mesh frequencies

s< , s> , t< , t> , u< , u> , (39)

can be buffered for future use. In fact, we do not buffer the mesh frequencies themselves, but
rather their position in terms of a linear memory offset, which allows for even faster access of
the associated vertex values. Aspects of the memory layout of the vertex functions are further
discussed in Sec. 4.4.

The invocation of symmetry relations in combination with buffered vertex interpolation
grants us a huge speedup in computing time. However, the algorithmic scaling of the com-
putational complexity remains steep, and it is expected that the computing time scales as
tstep ∼ Nαω with α ≈ 4. The scaling exponent, on the one hand, is a consequence of the dis-
cretization of the vertex functions, where the size of the underlying frequency mesh to leading
order (i.e. for the two-particle vertex function) scales as N3

ω. On the other hand, the com-
putation of the one-dimensional frequency integrals in the flow equations for the two-particle
vertex via the trapezoidal integration routine outlined earlier in this section contributes an
additional scaling factor of Nω. As exemplified in Fig. 4b for a Heisenberg antiferromagnet
on the kagome lattice, we numerically observe a scaling exponent of α = 3.98, which is very
close to the theoretical prediction.

3For the benchmark, we consider a nearest-neighbor Heisenberg model with interaction constant J = 1.0 on
the kagome lattice with truncation range L = 10 and employ the numerical core optimized for SU(2) symmetric
spin models. Frequencies are discretized logarithmically between ω = 0.005 and ω = 50.0 with Nω between 32
and 96. The cutoff is initialized at Λ = 50.0 and subsequently integrated down to 0.1 with a multiplicative step
size of 0.95. Timing is recorded and averaged over the next 5 integration steps for Λ< 0.1.
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4.3 Differential equation solver

With the lattice truncation and the vertex discretization scheme in place, the solution of the
pf-FRG flow equations Eq. (20) is within reach. The initial conditions of the vertex functions
at infinite cutoff Λ→∞ are known, see Eq. (21) – however, the true limit of infinite cutoff
cannot be implemented numerically. Therefore, for a numerical solution, the vertex functions
are initialized at an initial cutoff Λi which is chosen to be much greater than any intrinsic
energy scale of the spin system under study, and therefore closely resembles the limit of infinite
cutoff. Similarly, while the true physical solution of the vertex functions would be recovered
at Λ= 0, in practice it is sufficient to determine the solution at a final cutoff Λ f , which is small
compared to any intrinsic energy scale of the system. The solution of the vertex functions at
the final cutoff Λ f is then obtained by re-integrating the flow equations as

ΣΛ f (ω) = ΣΛi (ω) +

Λ f
∫

Λi

d
dΛ
ΣΛ(ω)dΛ (40)

and

Γ
µν,Λ f

i1 i2
(s, t, u) = Γµν,Λi

i1 i2
(s, t, u) +

Λ f
∫

Λi

d
dΛ
Γ
µν,Λ
i1 i2
(s, t, u)dΛ . (41)

The integrals in the equations above – and thus the solution of the coupled differential equation
– are computed with the Euler method: For vertex functions which are known at some cutoff
Λ, the new vertex functions at a slightly reduced cutoff Λ− δΛ (with δΛ small) are obtained
by linear extrapolation. For the single-particle vertex, the extrapolation is calculated as

ΣΛ−δΛ(ω) = ΣΛ(ω)−δΛ
d

dΛ
ΣΛ(ω) , (42)

and the two-particle vertex is obtained in a similar manner. In this spirit, the interval between
the initial cutoff Λi and the final cutoff Λ f is divided into NΛ discrete cutoff points which act
as support for the numerical stepping towards Λ f . Typically, the cutoff values are chosen loga-
rithmically dense around Λ f , but in principle any distribution of cutoff points can be defined,
see Sec. 5.1. Since the number of cutoff points NΛ defines the number of points at which the
flow equations need to be evaluated, the total computation complexity scales linearly with NΛ,
and increasing the number of cutoff points systematically reduces numerical errors [50].

4.4 Vertex functions and parallelization

The solution of the pf-FRG flow equations can be computationally demanding, especially for
spin models with reduced symmetry [48]. It is therefore crucial to enable an efficient par-
allelization of the algorithm not just on shared memory compute platforms, but also across
distributed memory architectures. In principle, the parallelization of the pf-FRG algorithm is
simple: At every step in the integration of the flow equations, i.e., at every discrete cutoff value
encountered, a large number of independent flow equations for the vertex basis functions need
to be computed. With the number of (parametrized) single-particle vertex functions ΣΛ(ω)
equaling Nω and the number of two-particle vertex functions Γµν,Λ

i1 i2
(s, t, u) being approximately

8N3
ωNs (a prefactor of 16 arising from the different basis components µ,ν and a factor of 1

2
from the exchange symmetry between the transfer frequencies s and u), the typical number
of independent equations to compute can be up to O(108) [32, 48], putting little constraint
on the maximum number of compute cores over which the workload can be parallelized. Yet,
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after every step in the integration of the flow equations, the results need to be synchronized
across all compute nodes, which introduces some communication overhead to the paralleliza-
tion. In the following, we discuss how the parallelization is implemented in SpinParser in an
attempt to reduce the communication overhead.

Due to the inherent simplicity of the single-particle vertex function ΣΛ(ω) – with its sole
dependence on one frequency argument, it is effectively a one-dimensional data structure –
we focus our discussion on the two-particle vertex Γµν,Λ

i1 i2
(s, t, u), which after exploiting the lat-

tice symmetries discussed in Sec. 4.1 is a 6-dimensional object (two basis index dimensions µ
and ν, three frequency dimensions s, t, and u, as well as one symmetry-reduced lattice site in-
dex). The vertex function is mapped onto linear memory space as follows4: The dependence
on the two transfer frequencies s and u is joined to a single dimension of length Nω(Nω+1)

2 ,
which represents all pairs s and u with s >= u; this dimension has the largest memory strides.
The second dimension of length Nω is the dependence on the transfer frequency t, followed
by two dimensions of length 4, comprising the basis indices µ and ν, respectively. The last
dimension of length Ns is the lattice site dependence, and it is stored contiguously in memory.
The rationale behind this memory layout is that it is often required to perform frequency inter-
polations for a fixed set of transfer frequencies s, t, and u over all combinations of basis indices
µ and ν, as well as over all lattice site indices. As mentioned in Sec. 4.2, it is then possible to
calculate the linear interpolation weights only once, and subsequently apply them efficiently
to all combinations of basis indices µ,ν and lattice sites, which are all stored contiguously in
memory.

Moreover, the two-particle vertex memory layout is beneficial for the parallelization across
multiple compute nodes. The total workload (i.e. the total number of differential equations
that need to be solved) is separated into blocks of 16Ns differential equations each, such that
every block of work is associated with a set of differential equations of fixed frequency struc-
ture, but spanning all basis function indices and lattice sites – which are stored contiguously in
memory and hence allow for the aforementioned efficient buffering of frequency interpolation
weights separately on every compute node. In addition, the structure of the flow equations
for the two-particle vertex is such that there exists one term which contains a combined fre-
quency integral and lattice site summation; this term (cf. Eq. (24)) contributes a significant
share to the computational workload. While the lattice site summation is performed at con-
stant transfer frequency arguments s, t, and u, the boundaries of the frequency integral depend
on the transfer frequency t, resulting in an augmented dependence of the overall computa-
tional workload within one block on t. Consequently, the memory layout was chosen such
that superblocks of 16NsNω vertex entries, spanning all combinations of indices t,µ,ν and
lattice sites, are stored contiguously in memory and the associated differential equations can
be solved with a smaller variability of computing time between different superblocks. The
number of such superblocks, Nω(Nω+1)

2 , – for typical parameters this is O(103) [32,48] – is still
large enough to allow for an efficient parallelization across multiple compute nodes.

Nonetheless, small variations in the expected computing time per superblock may still
appear, because the computational complexity of the internal frequency integrals in the flow
equations also depends on the value of the transfer frequencies s and u, as they directly impact
the size of the integration domain. The parallelization across compute nodes with distributed
memory architecture is therefore equipped with a load balancing system. Schematically, the
parallelization is implemented as follows (illustrated in Fig. 5). We assume that the SpinParser
software is executed in an MPI environment [49] with one MPI rank per compute node; each

4Note that the memory structure discussed here applies to the “TRI” numerical backend. For the “SU2” backend,
the memory layout is two separate memory strains for Γ 00,Λ

i1 i2
(s, t, u) and Γ 33,Λ

i1 i2
(s, t, u), with the order of the remaining

frequency and lattice site dependence the same as for the “TRI” backend. Similarly, the “XYZ” numerical backend
has four separate memory strains for Γ 00,Λ

i1 i2
(s, t, u), Γ 11,Λ

i1 i2
(s, t, u), Γ 22,Λ

i1 i2
(s, t, u), and Γ 33,Λ

i1 i2
(s, t, u).
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Figure 5: Schematic algorithm for the solution of pf-FRG flow equations. Initially,
the cutoff Λ, as well as the single-particle vertex ΣΛ(ω) and the two-particle ver-
tex Γµν,Λ

i1 i2
(s, t, u) are broadcasted across all compute nodes. Note that in the fig-

ure, indices are suppressed for the sake of readability. Next, the flow d
dΛΣ

Λ(ω) of
the single-particle vertex is computed and the result broadcasted across all compute
nodes. Subsequently, the two-particle vertex flow d

dΛΓ
µν,Λ
i1 i2
(s, t, u) is computed and

the result returned to the main rank. Finally, the updated vertex functions ΣΛ−δΛ(ω)
and Γµν,Λ−δΛ

i1 i2
(s, t, u) at reduced cutoff Λ−δΛ can be calculated; the latter calculation

is the only operation which is not parallelized across multiple (distributed memory)
compute nodes.

compute node is assumed to have access to multiple shared memory CPU cores. Upon exe-
cuting SpinParser, one MPI rank assumes a coordinating role, which we refer to as the main
rank, whereas all remaining ranks will be referred to as worker ranks. We further assume that
the initialization phase of the code has completed, i.e. all parameters for the calculation have
been read (see Sec. (5.1)) and the symmetry analysis of the underlying lattice spin model (as
outlined in Sec. 4.1) has been performed on every rank. In the first step of the numerical
solution of the flow equations, the cutoff parameter Λ, the single-particle vertex ΣΛ(ω), and
the two-particle vertex Γµν,Λ

i1 i2
(s, t, u) are prepared with the appropriate initial conditions on

the main rank and subsequently broadcasted to all worker ranks. Next, the flow of the single-
particle vertex, d

dΛΣ
Λ(ω), is computed; to this end, on the main rank, the total computational

workload (i.e. the flow equations for each frequency component of the vertex) is divided into
units of work (sets of frequency components that need to be computed) which are then suc-
cessively delegated to the worker ranks, as well as to additional compute threads on the main
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Figure 6: Parallelization scaling on distributed memory computing platforms. The
compute time tstep is measured for a single cutoff step in the solution of the pf-FRG
flow equations for spin models of the most generic form given in Eq. (1) on a honey-
comb lattice with truncation range L = 10. Models 1 and 2 are computed at Nω = 64
and Nω = 96, respectively5. Timing is measured on Intel Xeon Phi 7250-F Knights
Landing processors with 68 physical CPU cores per compute node. (a) Compute time
plotted as a function of the number of physical CPU cores participating in the calcu-
lation. The red dashed lines indicate perfect scaling relative to the performance on
a single compute node (gray line). (b) Relative speedup with respect to the perfor-
mance on a single compute node (gray line) plotted as a function of the number of
compute nodes participating in the calculation. The red dashed line indicates perfect
scaling.

rank. Each rank then performs the assigned calculation and returns the result to the main
rank. Once all compute ranks have completed their calculations, the resulting single-particle
vertex flow d

dΛΣ
Λ(ω) is broadcasted to all compute nodes, since its knowledge is required by

every rank for the impending computation of the flow of the two-particle vertex. The compu-
tation of the latter, d

dΛΓ
µν,Λ
i1 i2
(s, t, u), is performed within the same scheme of delegating blocks

of work to a set of worker ranks: The computational work is divided into units of work; for
the flow of the two-particle vertex, the unit size typically is a multiple of the superblock size
16NsNω, thus enabling an efficient calculation of vertex interpolations on every rank. One
initial unit of work is delegated to each worker rank; note that the size of the initial unit of
work is chosen such that every rank is expected to compute multiple such units. Whenever a
compute rank completes its assigned work, the result is returned to the main rank. The main
rank, in turn, delegates additional units of work until the entire computation is complete. Note
that the main rank keeps track of the computing time of each rank and dynamically adjusts the
size of newly generated units of work such that all compute ranks are expected complete their
work at approximately the same time. Finally, the extrapolation of the vertex functions by a
small cutoff step δΛ is performed on the main rank to obtain the new cutoff value Λ−δΛ, the
single-particle vertex ΣΛ−δΛ(ω), and the two-particle vertex Γµν,Λ−δΛ

i1 i2
(s, t, u) as described in

Sec. 4.3. This entire routine (a single cutoff step in the solution of the differential equations)
is repeated until the desired cutoff value is reached.

We conclude the discussion of the parallelization by benchmarking its efficiency. Varying
the number of compute nodes and CPU cores utilized in the computation, we measure the
compute time tstep for a single cutoff step in the solution of the flow equations and determine

5For the benchmark, we consider a nearest-neighbor Heisenberg-Kitaev-Γ model on the honeycomb lattice with
truncation range L = 10. Frequencies are discretized logarithmically between ω = 0.005 and ω = 50.0 with
Nω = 64 (Nω = 96) points. The cutoff is initialized at Λ = 50.0 and subsequently integrated down to 0.1 with a
multiplicative step size of 0.95. Timing is recorded and averaged over the next 5 integration steps for Λ< 0.1.
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its scaling relative to the performance on a single compute node. As displayed in Fig. 6a, the
compute time scales almost perfectly. Small deviations become visible only when the compute
time is smaller than tstep ≈ 100 s (measured on Intel Xeon Phi 7250-F Knights Landing proces-
sors with 68 physical CPU cores per compute node). In the regime where tstep remains above
that threshold, the relative speedup scales approximately linearly with the number of compute
nodes and the parallelization overhead remains negligible (Fig. 6b).

5 Usage instructions

The SpinParser software consists of a single executable named SpinParser, which can be run
from the terminal. When running the executable, the mandatory argument TASKFILE needs
to be provided, and a list of optional arguments may further be included:

SpinParser [OPTION]... TASKFILE

The mandatory argument is used to pass the file path to a so-called “task file” to the executable,
in which the lattice spin model is specified along with additional parameters that are required
to uniquely define the numerical problem. We describe the structure of such a task file in detail
in Sec. 5.1. In addition to the parameters specified in the task file, the executable evaluates the
environment variable OMP_NUM_THREADS in order to determine the number of threads which
should be utilized for the computation. If the SpinParser executable is launched in an MPI
environment, a hybrid parallelization is performed, where every MPI rank spawns the number
of threads defined in OMP_NUM_THREADS. Furthermore, the following optional arguments can
be provided to the executable:

-h [ --help ]

Print a help message which contains a list of possible arguments that may be passed to the
executable, and exit. No calculation is performed.

-r [ --resourcePath ] DIR

Define a search path DIR to scan for resource files, which contain lattice and spin model defi-
nitions, see Secs. 5.2 and 5.3.

-v [ --verbose ]

Make output more verbose.

--debugLattice

Only construct the lattice representation and exit. No calculation is performed, but the lattice
information is written to disk, see Sec. 5.4.

-t [ --checkpointTime ] TIME (=3600)

Define a time interval TIME in seconds at which checkpoint files are written to disk. Incomplete
calculations can be resumed from these checkpoint files, see Sec. 5.1.

-f [ --forceRestart ]

Force a restart of the calculation, even if previous checkpoint files are available, see Sec. 5.1.

-d [ --defer ]

Do not perform measurements; instead, write the full vertex data to disk. Measurements are
performed when the executable is run with the same task file for a second time.
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1 <task>
2 <parameters>
3 <frequency discretization="exponential">
4 <min>0.005</min>
5 <max>50.0</max>
6 <count>32</count>
7 </frequency>
8 <cutoff discretization="exponential">
9 <min>0.1</min>

10 <max>50</max>
11 <step>0.95</step>
12 </cutoff>
13 <lattice name="square" range="4"/>
14 <model name="square-heisenberg" symmetry="SU2">
15 <spin>0.5</spin>
16 <j>1.0</j>
17 </model>
18 </parameters>
19 <measurements>
20 <measurement name="correlation"/>
21 </measurements>
22 </task>

Listing 1: Example of a task file. The task file contains relevant information for
the discretization of the frequency dependence (lines 3–7), the discretization of the
cutoff parameter (lines 8–12), the underling lattice graph of the quantum spin model
(line 13), as well as the spin model itself (lines 14–17). Note that the lattice and spin
model definitions are only referenced, and their actual implementation is found in
separate files, see Secs. 5.2 and 5.3 for details. Finally, the desired measurements of
physical observables are defined in line 20.

5.1 Structure of a task file

The task file is a plain-text file, in which the computational problem is defined. The full prob-
lem specification does not only contain a description of the quantum spin model itself, i.e., the
precise coupling constants Jµνi j in the general spin Hamiltonian Eq. (1) as well as the underling
lattice graph, but it also contains parameters which define the numerical precision for the solu-
tion, e.g. the discretization and boundary of the frequency grid as well as the cutoff parameter
values over which the flow equations are integrated. Furthermore, the task file contains a list
of physical observables which should be measured throughout the computation. Task files are
conveniently written in an XML structure; a complete example of a task file is shown in Lst. 1.
In the remainder of this subsection, we discuss in detail the structure of the task file.

Every task file contains one task node on the top level (line 1 in Lst. 1), which contains
the two sub nodes parameters and measurements (lines 2 and 19, respectively, in Lst. 1).
The former of the sub nodes must contain one instance of the nodes frequency, cutoff,
lattice, and model each, while the latter can contain any number of measurement nodes.

It is possible two define the discretization and the boundaries of the frequency spectrum
in two different ways. The first option is to use a logarithmically spaced mesh of discrete
frequencies, which is generated symmetrically around zero. Such an automatically generated
frequency distribution is specified via
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<frequency discretization="exponential">
<min>0.005</min>
<max>50.0</max>
<count>32</count>

</frequency>

where the min and max parameters specify the boundaries ωmin and ωmax of the frequency
mesh on the positive half-axis, and the negative frequencies are generated implicitly by sym-
metry. The overall number of positive frequencies Nω is defined by the parameter count; the
total number of positive and negative frequencies is therefore N total

ω = 2Nω. Positive frequency
mesh points ωn for n= 0, . . . , Nω−1 are generated according to the distribution

ωn =ωmin

�

ωmax

ωmin

�
n

Nω−1

. (43)

Alternatively, the frequency mesh can be defined explicitly by listing all frequency points on
the positive half-axis, where negative frequencies are again added implicitly by symmetry. An
example for the explicit definition of frequencies would look as follows:

<frequency discretization="manual">
<value>0.005</value>
<value>0.0067298</value>
<!-- any number of frequency values can be listed here -->
<value>37.1482</value>
<value>50.0</value>

</frequency>

Similarly, the discretization of the cutoff parameter Λ needs to be specified. It can, too,
either be generated automatically or be defined manually. While the automatically generated
logarithmic discretization around zero is in principle the same as for the previously discussed
frequency discretization (but restricted to positive values only), its specification takes slightly
different arguments:

<cutoff discretization="exponential">
<min>0.1</min>
<max>50</max>
<step>0.95</step>

</cutoff>

Here, instead of specifying the total number of discrete cutoff points, a multiplicative step
size b is provided by the parameter step in addition to the lower and upper boundaries Λmin
and Λmax specified in min and max, respectively. Based on the step size, the cutoff parameter
values Λn for n= 0, . . . ,

�

logb

�

Λmin
Λmax

��

are generated as

Λn = Λmax bn . (44)

Alternatively, the cutoff parameter discretization can also be specified explicitly:

<cutoff discretization="manual">
<value>50.0</value>
<value>47.5</value>
<!-- any number of cutoff values can be listed here -->
<value>0.106121</value>
<value>0.100815</value>

</cutoff>
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The third parameter block, which is required to be defined for a full specification of the
problem, is the lattice node (line 13 in Lst. 1) which describes the lattice graph of the
quantum spin model. This parameter block does not actually contain an explicit definition of
the lattice (in terms of primitive lattice vectors and basis site positions). Instead, it is assigning
values to the name attribute and the range attribute. The former attribute is a reference to
the explicit lattice definition, which is defined in a separate file; for details on the definition
of custom lattice graphs, see Sec. 5.2. The latter attribute specifies the truncation range L of
vertex functions on the (a priori) infinite lattice graph according to the truncation algorithm
described in Sec. 4.1. For example, the parameter block

<lattice name="square" range="4"/>

would instruct SpinParser to locate and use a lattice implementation with the name “square”
and initialize vertex functions to capture two-particle interactions on lattice sites which are up
to a maximum of 4 lattice bonds apart.

Lastly, the spin interactions themselves need to be specified, i.e. the values of the inter-
actions constants Jµνi j which appear in the general Hamiltonian Eq. (1) need to be assigned.
Similar to the specification of the underlying lattice graph, the structure of the spin interac-
tions is not explicitly defined in the task file. Instead, just like for the lattice, the model node
must contain an attribute name, which references a spin model implementation that is located
in a separate file, see Sec. 5.3 for a discussion of custom spin model definitions. Unlike the
lattice definition, however, the spin model definition is not exclusively interfaced by the name
attribute. Rather, spin model definitions may define further custom variables for the interac-
tion constants, which need to be assigned values in the task file. For example, the external
spin model definition may implement a nearest-neighbor Heisenberg model with the name
“square-heisenberg” and the coupling constant “j”. We would instruct the SpinParser software
to use this spin model implementation and assign the value 1.0 to the exchange constant “j”
with the following parameter block:

<model name="square-heisenberg" symmetry="SU2">
<j>1.0</j>

</model>

Note that depending on the specific spin model definition, it is possible that multiple exchange
constants are required to be defined, in which case multiple sub-nodes, e.g. “j1” and “j2” for
nearest and next-nearest neighbor interactions, respectively, can be appended to the model
node. Furthermore, the symmetry attribute is used to instruct SpinParser on which numer-
ical backend to use for the computation. The SpinParser software provides three different
numerical backends which are optimized for different types of spin models: Possible values
are (i) “SU2”, which supports generalized spin-S Heisenberg models (i.e., exchange constants
with only J x x

i j = J y y
i j = J zz

i j nonzero), (ii) “XYZ”, which supports Kitaev-like models (only J x x
i j ,

J y y
i j , and J zz

i j nonzero, but not necessarily all equal), and (iii) “TRI”, which supports general
time-reversal invariant models as given by the general Hamiltonian Eq. (1). It is possible to
facilitate numerical cores with fewer symmetry requirements, e.g. “TRI”, for the computation
of spin models with greater symmetry, e.g. Heisenberg models, although this would unnec-
essarily increase the computational cost of the problem. The converse is not true; it is not
possible to solve low-symmetry models with a high-symmetry numerical core.

Depending on the choice of the numerical backend, further parameters may be included
in the definition of the spin model, in addition to the exchange constants. In case the “SU2”
backend is selected, the spin length S can be defined in the sub-node spin. If such parameter
is not provided, the default S = 1/2 is assumed. Furthermore, the option normalization can
be passed, which defines a normalization constant that is applied to all interaction constants;
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if no explicit value is given, a default value of 2S is assumed. For example, a calculation with
spin-1 moments would be initialized with the following parameter block:

<model name="square-heisenberg" symmetry="SU2">
<spin>1.0</spin>
<j>1.0</j>

</model>

Note, however, that the generalization to S > 1/2 must be taken with care, as unphysical
states in the pseudofermion representation of spin operators may emerge. Ref. [20] provides
a detailed discussion of the spin-S generalization and on how to avoid unphysical states. The
numerical backends “XYZ” and “TRI“ only support calculations at spin length S = 1/2. Yet,
the option normalization may still be defined.

Besides the parameters block, which fully specifies the quantum spin model and its nu-
merical solution, it is usually necessary to also define the measurements block. The latter
contains instructions to extract physical observables from the numerical solution of the quan-
tum spin model. In most cases it is sufficient to specify the spin correlation measurement
as

<measurement name="correlation"/>

which would extract the two-spin correlation function χµν,Λ
i j as defined in Eq. (29) for all

values of Λ encountered throughout the evolution of the flow equations (i.e., the values spec-
ified in the cutoff block of the task file) and for all symmetry-allowed components (i.e.,
χ

x x ,Λ
i j = χ y y,Λ

i j = χzz,Λ
i j for the “SU2” numerical core; χ x x ,Λ

i j , χ y y,Λ
i j , χzz,Λ

i j for the “XYZ” numeri-

cal core; and general χµν,Λ
i j for µ= x , y, z if the “TRI” numerical core is selected. All numerical

cores further measure the density-like correlations χ00,Λ
i j .)

A few adjustments are possible in order to further refine the specification of measure-
ments to be recorded. To this end, the measurement node can be decorated with additional
attributes:

<measurement name="correlation" output="measurement.obs" minCutoff=←-
"0.1" maxCutoff="1.0" method="defer"/>

The attribute output is used to specify the output file where the measurement results are
to be stored. Its default output path equals the path of the task file, with the file extension
replaced by “.obs”. More fine grained control over the cutoff values at which measurements
are to be taken is achieved with the minCutoff and maxCutoff parameters. The former
defines a lower limit for the cutoff parameter Λ below which no more measurements are taken,
whereas the latter defines an upper limit for the cutoff parameter. A special role is assumed
by the method attribute. Setting this attribute to “defer” instructs the SpinParser software to
suppress all measurements and instead write the raw vertex functions to disk. The output
file, which contains the vertex data, is written in an HDF5 structure [61], and the file name is
generated by replacing the extension of the task file with “.data”. The measurements can then
be performed later by re-running the SpinParser software with the same task file.

Finally, the task file may contain one more block of information, which is not shown in
the example task file Lst. 1, since it is dynamically generated whenever the task file is run in
SpinParser; it is the node calculation, which contains information on the execution status
of the task file. For a new calculation it is simply not present. For a completed calculation, it
may look as follows:

<calculation startTime="2021-Jan-01 12:00:00" checkpointTime="2021-←-
Jan-01 12:10:00" endTime="2021-Jan-01 12:10:00" status="←-
finished"/>
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The attributes startTime and endTime record the time points at which the computation was
started and at which it finished. For computations which may require a long time to solve, the
attribute checkpointTime is of particular interest. It records the most recent time point at
which a so-called checkpoint, i.e. a full snapshot of the current state of the calculation, was
written to disk. Such snapshots are periodically written to a file, whose name matches the
task file path with the file extension replaced by “.checkpoint”, and they allow the resumption
of a computation from the state at which the checkpoint was written, even if the SpinParser
software was terminated unexpectedly at a later time (e.g. because it exceeded a given com-
puting time allocation.) A computation which was terminated unexpectedly may end up in
the calculation status

<calculation startTime="2021-Jan-01 12:00:00" checkpointTime="2021-←-
Jan-01 12:05:00" status="running"/>

Resuming a calculation from a checkpoint is done by simply re-running the SpinParser soft-
ware with the same task file, which now contains the status attribute set to “running”. The
checkpointing mechanism can also be used in order to extend a previously completed calcula-
tion down to lower cutoff values of the cutoff parameter: Simply edit the task file to contain
a lower minimum cutoff value in the parameters section and manually set the status to
“running”.

5.2 Definition of lattice graphs

The lattice graph is an integral part of the definition of a quantum spin model in the form of
the general Hamiltonian Eq. (1). On one and the same lattice graph, it is possible to define
a plethora of different spin models with different spin interactions, so in order to reduce re-
dundancies in the implementation of quantum spin models, it is reasonable to separate the
lattice definition from the definition of spin interactions. In this subsection, we outline the
implementation of lattices in the SpinParser software.

We mentioned previously, in Sec. 5.1, that lattice definitions are only referenced in the
task file, whereas the actual definition happens elsewhere. In fact, lattice definitions are read
from external files with XML-like structure, see the full example in Lst. 2. We refer to those
files as “resource files”. Resource files are automatically searched for lattice definitions whose
name matches the one specified in the task file. Any files with the file ending “.xml” within the
search path are automatically searched; the search path for resource files can be provided as
a command line option to the SpinParser executable, see Sec. 5. If no search path is specified
explicitly, it defaults to the first existing directory from the following two:

$BINDIR/../res
$BINDIR/

where $BINDIR is the directory in which the SpinParser executable is located.
The definition of every lattice is based on the full specification of a single unit cell (cf.

lines 12–23 in Lst. 2). One unit cell hereby refers to the set of primitive lattice vectors which
define the periodicity of the underlying Bravais lattice, any number of basis sites, and all lattice
bonds associated with that unit cell. The unit cell definition itself

<unitcell name="honeycomb">
<!-- definition of primitives, basis sites, and lattice bonds ←-

goes here -->
</unitcell>

hereby includes an attribute name (“honeycomb”, in this case), which is referenced in the task
file and used to identify the matching lattice definition. The three primitive Bravais lattice
vectors
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1 <unitcell name="square">
2 <primitive x="1" y="0" z="0" />
3 <primitive x="0" y="1" z="0" />
4 <primitive x="0" y="0" z="1" />
5
6 <site x="0" y="0" z="0" />
7
8 <bond from="0" to="0" da0="1" da1="0" da2="0" />
9 <bond from="0" to="0" da0="0" da1="1" da2="0" />

10 </unitcell>
11
12 <unitcell name="honeycomb">
13 <primitive x="3/2" y="sqrt(3)/2" z="0" />
14 <primitive x="3/2" y="-sqrt(3)/2" z="0" />
15 <primitive x="0" y="0" z="1" />
16
17 <site x="0" y="0" z="0" />
18 <site x="1" y="0" z="0" />
19
20 <bond from="0" to="1" da0="0" da1="0" da2="0" />
21 <bond from="1" to="0" da0="1" da1="0" da2="0" />
22 <bond from="1" to="0" da0="0" da1="1" da2="0" />
23 </unitcell>

Listing 2: Examples of lattice definitions. Every lattice is constructed from a unit
cell, which is repeated periodically according to the shift defined by the primitive
lattice vectors. Multiple unit cell definitions can be summarized in one file, as
illustrated here for the square lattice (lines 1–10) and the honeycomb lattice (lines
12–23).

<primitive x="3/2" y="sqrt(3)/2" z="0" />
<primitive x="3/2" y="-sqrt(3)/2" z="0" />
<primitive x="0" y="0" z="1" />

are defined as Cartesian three-dimensional vectors via their x , y , and z components, which are
listed as attributes of the respective primitive nodes. The lattice primitives have an implicit
order in which they are defined; we shall refer to them as the zeroth, the first, and the second
lattice vector, respectively, which in the example above are

a0 =





3/2p
3/2
0



 , a1 =





3/2
−
p

3/2
0



 , a2 =





0
0
1



 . (45)

Note that the definition of every lattice unit cell is embedded into a three-dimensional space,
regardless of the dimensionality of the lattice itself. Two-dimensional lattices simply do not
implement any lattice bonds along the third dimension (see below).

Basis sites are defined by site nodes, which comprise x , y , and z components that describe
the position of the basis site within the unit cell:

<site x="0" y="0" z="0" />
<site x="1" y="0" z="0" />
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(a) (b)
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Figure 7: Lattice unit cell definitions for the square lattice and the honeycomb
lattice. (a) The unit cell of the square lattice (gray shaded square) contains the two
primitive lattice vectors a0 and a1, one lattice site (site b0, indicated in red), and
two lattice bonds (indicated in red). (b) The unit cell of the honeycomb lattice (gray
shaded diamond) contains the the two primitive lattice vectors a0 and a1, two lattice
sites (sites b0 and b1, indicated in red), and three lattice bonds (indicated in red).

Every unit cell definition may contain any number of basis sites. Basis sites are implicitly
indexed according to the order in which they are defined, starting at zero. In the example
above, the two basis sites

b0 =





0
0
0



 , b1 =





1
0
0



 (46)

are defined, forming the two-site basis of the bipartite honeycomb lattice.
Finally, the connectivity of the lattice needs to be established. To this end, a list of all the

lattice bonds within a single unit cell must be provided:

<bond from="0" to="1" da0="0" da1="0" da2="0" />
<bond from="1" to="0" da0="1" da1="0" da2="0" />
<bond from="1" to="0" da0="0" da1="1" da2="0" />

The definition of a lattice bond is to be understood as follows. Every lattice bond connects
two lattice sites, which are specified via the from and the to attribute. The values of these
attributes refer to the index of the basis site, i.e., the first bond in the example above would
connect basis site b0 to basis site b1. This first bond connects two sites within the same unit cell;
however, we also need to specify the connections to neighboring unit cells. For this purpose
the attributes da0, da1, and da2 exist, which capture the offset of the target lattice site in
units of the primitive lattice vectors a0, a1, and a2, respectively. The second lattice bond in the
example above would therefore connect basis site b1 of one unit cell to basis site b0 of the unit
cell shifted by the lattice vector a0. Similarly, the third lattice bond connects basis site b1 of
one unit cell to basis site b0 of the unit cell shifted by the lattice vector a1. In deciding which
lattice bonds to include in the unit cell definition, one needs to take care not to double count
bonds. Each bond, which connects sites in between two unit cells, must only be attributed to
one of the two neighboring unit cells, see the illustration in Fig. 7.

5.3 Definition of spin interactions

With the definition of the underlying lattice graph discussed in the previous section, the second
integral part to defining a quantum spin model is the specification of the interaction constants
Jµνi j themselves. These are defined in close analogy to the lattice unit cells; they are defined in
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1 <model name="square-heisenberg">
2 <interaction parameter="j" from="0,0,0,0" to="1,0,0,0" type="←-

heisenberg" />
3 <interaction parameter="j" from="0,0,0,0" to="0,1,0,0" type="←-

heisenberg" />
4 </model>
5
6 <model name="honeycomb-kitaev">
7 <interaction parameter="j" from="0,0,0,0" to="0,0,0,1" type="←-

heisenberg" />
8 <interaction parameter="j" from="0,0,0,0" to="0,-1,0,1" type="←-

heisenberg" />
9 <interaction parameter="j" from="0,0,0,0" to="-1,0,0,1" type="←-

heisenberg" />
10 <interaction parameter="k" from="0,0,0,0" to="0,0,0,1" type="xx←-

" />
11 <interaction parameter="k" from="0,0,0,0" to="0,-1,0,1" type="←-

yy" />
12 <interaction parameter="k" from="0,0,0,0" to="-1,0,0,1" type="←-

zz" />
13 </model>

Listing 3: Example of spin model definitions. Every spin model contains a list
of two-spin interactions, each of which is characterized by the two lattice sites it
connects as well as the spin components it couples. Multiple spin model definitions
can be summarized in one file, as illustrated here for the Heisenberg model on the
square lattice (lines 1–4) and the Heisenberg-Kitaev model on the honeycomb lattice
(lines 6–13).

XML-like resource files located within the same search path as for the lattice unit cell defini-
tions (cf. Sec. 5.2). Note, however, that while lattice unit cells are self-sustained objects, the
definition of a spin model is less general. It is typically tailored to a specific underlying lattice,
since in its definition we make use of the concrete lattice parametrization and the list of basis
sites. Full examples of spin model definitions for the Heisenberg model on the square lattice
and for the Heisenberg-Kitaev model on the honeycomb lattice are shown in Lst. 3 (lines 1–4
and 6–13, respectively). Every spin model definition is effectively a list of two-spin interaction
terms, each represented by an interaction node in the XML structure. Each two-spin inter-
action is fully characterized by the two lattice sites it connects, the information on which spin
components are being coupled, and a name for the coupling constant to be referenced in the
task file for setting the actual value of the interaction strength.

We emphasize that the spin operators, which appear in the two-spin interaction terms as
defined in the general model Hamiltonian Eq. (1), are defined in their local frames of reference.
The local coordinate system may not necessarily be the same as the laboratory frame, in which
the lattice geometry is defined; especially in Kitaev-like spin models they typically do not
coincide. Similarly, the local frame of reference may differ across the various basis sites in a
lattice with a nontrivial unit cell.

The two connecting lattice sites are specified via the attributes from and to. Each of these
attributes is to be assigned a tuple of four comma separated values which reference lattice sites
by the lattice vectors a0, a1, a2 and the basis site index b. For example, the interaction
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<interaction parameter="j" from="0,0,0,0" to="1,0,0,0" type="←-
heisenberg" />

would couple the lattice site at 0·a0+0·a1+0·a2+b0 with the lattice site at 1·a0+0·a1+0·a2+b0;
in the definition of the square lattice shown in Lst. 2 these two lattice sites would be nearest
neighbors. All interactions within one unit cell of the lattice spin model need to be defined –
similar to the definition of a lattice unit cell, care needs to be taken in the definition in order to
avoid double counting of interactions. Furthermore, we emphasize that unlike the lattice bond
definitions, spin interaction definitions have a sense of orientation, i.e., for inversion-symmetry
breaking interactions (Dzyaloshinskii-Moriya interactions) it sometimes may be convenient to
define the first lattice site (the from attribute) to lie outside of the reference unit cell and the
second site (the to attribute) to be within the reference unit cell (whereas in the definition of
lattice bonds definitions, the first site always lies within the reference unit cell.)

The information of which spin components should be coupled is contained in the type
attribute. All spin interactions are of the form

Sfrom ·M · Sto , (47)

where Sfrom and Sto are the two spins involved, and the 3×3 matrix M determines the structure
of the interaction. The type attribute assumes one of the following possible string values:
“heisenberg”, “xxyy”, “gx”, “gy”, “gz”, “µν” or “–µν”, where µ and ν are either x , y or z. The
first two string values resemble Heisenberg and XY interactions, respectively, and translate
into the interaction matrices

Mheisenberg =





1 0 0
0 1 0
0 0 1



 and Mxxyy =





1 0 0
0 1 0
0 0 0



 . (48)

Symmetric off-diagonal interactions, typically referred to as Γ -interactions in the literature, are
accessible via the string values “gx”, “gy”, and “gz”, and translate into the respective interaction
matrices

Mgx =





0 0 0
0 0 1
0 1 0



 , Mgy =





0 0 1
0 0 0
1 0 0



 , and Mgz =





0 1 0
1 0 0
0 0 0



 . (49)

Finally, the string values “µν” and “–µν” denote specific two-spin interactions between the µ
and ν components of spins Sfrom and Sto; their matrix components are given by

�

Mµν

�

αβ
= δαβ and

�

M−µν
�

αβ
= −δαβ . (50)

Since it is possible to define multiple types of interactions between the same two lattice sites,
the latter two expressions can be used as building blocks to construct more complicated ex-
change terms, e.g. Dzyaloshinskii-Moriya or Γ ′ interactions, which sometimes emerge in the
simulation of Hamiltonians for realistic materials.

5.4 Output data

In the previous subsections, we have discussed in detail how quantum spin models can be set up
for a numerical solution with the help of SpinParser. In this section, we discuss the next crucial
step: the interpretation of the output data. Besides the temporary “.data” and “.checkpoint”
files mentioned before, running the SpinParser software produces two more key output files –
the actual measurement output (the “.obs” file mentioned in Sec. 5.1) and a second file, which
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1 <lattice>
2 <site id="0" x="0.000000" y="0.000000" z="0.000000" ←-

parametrized="true"/>
3 <site id="1" x="0.000000" y="-1.000000" z="0.000000" ←-

parametrized="true"/>
4 <site id="2" x="0.000000" y="-2.000000" z="0.000000" ←-

parametrized="true"/>
5 <!-- [...] more sites may be listed here -->
6 <bond from="0" to="13" />
7 <bond from="0" to="14" />
8 <bond from="1" to="0" />
9 <!-- [...] more bonds may be listed here -->

10 <interaction from="0" to="13" value="←-
[[1.000000,0.000000,0.000000], [0.000000,1.000000,0.000000],←-
[0.000000,0.000000,1.000000]]" />

11 <interaction from="0" to="14" value="←-
[[1.000000,0.000000,0.000000], [0.000000,1.000000,0.000000],←-
[0.000000,0.000000,1.000000]]" />

12 <interaction from="1" to="0" value="←-
[[1.000000,0.000000,0.000000], [0.000000,1.000000,0.000000],←-
[0.000000,0.000000,1.000000]]" />

13 <!-- [...] more interactions may be listed here -->
14 </lattice>

Listing 4: Example of a lattice description file. The file has a simple XML structure,
in which all lattice sites within truncation range of a fixed reference site are listed
(lines 2–5), all bonds connecting the lattice sites are specified (lines 6–9), and all
spin interactions are detailed with their interaction strength (lines 10–13).

contains a description of the lattice spin model which was constructed based on the parameter
specifications in the task file and the resource files. The latter is stored in a file whose name is
generated by substituting the file name extension of the task file with the ending “.ldf”.

The lattice description file “.ldf” is simply an XML-structured list of all lattice sites, lattice
bonds, and spin interactions within the lattice with additional information on the symmetry
reduction which has been performed by SpinParser. The purpose of the lattice description file
is to enable a simple assessment of whether the lattice spin model and the coupling constants
specified in the task file and in the resource files have been implemented correctly. To this
end, it is helpful to import the “.ldf” file in an automated script for further processing and
subsequent plotting. Note that while the SpinParser executable itself does not offer further
processing or visualization of “.ldf” files, the SpinParser source code distribution [62] con-
tains additional Python scripts for the visualization of “.ldf” files. A full example of a lattice
description file is shown in Lst. 4.

Lattice sites are specified in the “.ldf” file as XML nodes of the name site, and each lattice
site is assigned a unique identifier via the attribute id:

<site id="0" x="0.000000" y="0.000000" z="0.000000" parametrized="←-
true"/>

Furthermore, the real space position (embedded in Cartesian three-dimensional space) of each
lattice site is stored in the three attributes x, y, and z, which allows to easily generate a visual
representation of the lattice. The last attribute, parametrized, carries information on the
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internal representation of the lattice spin model, which the SpinParser software has generated
in order to optimize the computation: If the value is “true”, the lattice site is part of the
internal computational basis and all vertex functions are computed explicitly for that lattice
site. If the value is “false”, vertex functions which involve that lattice site are not evaluated
explicitly, but rather they are related to the reduced internal computational basis via lattice
and/or spin symmetries. The ratio of the total number of lattice sites N total

s (parametrized and
unparametrized) to the number of parametrized lattice sites Ns thus serves as an indicator
of the numerical complexity of the problem and the simplification which was achieved by
exploiting symmetry transformations (cf. the discussion in Sec. 4.1.) Lattice bonds

<bond from="0" to="13" />

are specified in reference to the unique identifiers of the connecting lattice sites, which are
stored in the from and to attributes. Lattice bonds reflect the connectivity of the lattice
sites and are independent from the spin interactions in the model. The latter are defined
by interaction nodes in the XML structure,

<interaction from="0" to="13" value="[[1.000000,0.000000,0.000000],←-
[0.000000,1.000000,0.000000], [0.000000,0.000000,1.000000]]" /←-

>

which, similar to the lattice bonds, reference two lattice sites between which the interactions
occur. The interaction type and strength is encoded in a 3× 3 interaction matrix, akin to the
definition in Eq. (47), whose entries are stored in the value attribute. The values are stored
row-wise, i.e., the three tuples of values resemble the three rows of the interaction matrix.

The second (and arguably more important) output file is the “.obs” file, in which the ob-
served measurement results are stored. The precise content of the “.obs” file depends on the
details of the task file – in particular on the measurements block in the task file, see Sec. 5.1,
and on the selected numerical core in the model section of the task file. However, as we shall
see below, the general structure of the correlation measurement output is always the same,
regardless of the choice of the numerical core. The measurement data is stored in an HDF5
format. An exemplary file structure, which was generated for a Heisenberg model on the
square lattice with the numerical backend for SU(2) symmetric models, is shown in Lst. 5. We
emphasize the use of the numerical core for SU(2)-symmetric models here, because it directly
affects the output file: Depending on the symmetry of the model, different components of the
two-spin correlation function are measured, see the paragraph on measurements in Sec. 5.1.
For the “SU2” numerical core, the root path in the HDF5 file structure contains the two groups

/SU2CorDD Group
/SU2CorZZ Group

which correspond to the two-spin correlation measurements χ00,Λ
i j and χzz,Λ

i j , respectively.
Analogously, for the “XYZ” numerical core, the groups XYZCorDD, XYZCorXX, XYZCorYY, and
XYZCorZZ would be created. In case of the most general “TRI” numerical core, the groups
TRICorDD and TRICorAB for any A,B=X,Y,Z would be created. Note that the spin compo-
nents are defined in the local frames of reference of the respective spin operators.

Each such group of measurements contains additional meta information on the underlying
lattice geometry, e.g.

/SU2CorDD/meta/basis Dataset {1}
/SU2CorDD/meta/latticeVectors Dataset {3}
/SU2CorDD/meta/sites Dataset {1, 41}

where the dataset basis in this case is a one-element list of a three-component vector, which
contains the real-space position of the first (and only) basis site in the unit cell of the square
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1 / Group
2 /SU2CorDD Group
3 /SU2CorDD/data Group
4 /SU2CorDD/data/measurement_0 Group
5 /SU2CorDD/data/measurement_0/cutoff Attribute {1}
6 /SU2CorDD/data/measurement_0/data Dataset {1, 41}
7 /SU2CorDD/data/measurement_1 Group
8 /SU2CorDD/data/measurement_1/cutoff Attribute {1}
9 /SU2CorDD/data/measurement_1/data Dataset {1, 41}

10 # [...] more measurements may be listed here
11 /SU2CorDD/meta Group
12 /SU2CorDD/meta/basis Dataset {1}
13 /SU2CorDD/meta/latticeVectors Dataset {3}
14 /SU2CorDD/meta/sites Dataset {1, 41}
15 /SU2CorZZ Group
16 /SU2CorZZ/data Group
17 /SU2CorZZ/data/measurement_0 Group
18 /SU2CorZZ/data/measurement_0/cutoff Attribute {1}
19 /SU2CorZZ/data/measurement_0/data Dataset {1, 41}
20 /SU2CorZZ/data/measurement_1 Group
21 /SU2CorZZ/data/measurement_1/cutoff Attribute {1}
22 /SU2CorZZ/data/measurement_1/data Dataset {1, 41}
23 # [...] more measurements may be listed here
24 /SU2CorZZ/meta Group
25 /SU2CorZZ/meta/basis Dataset {1}
26 /SU2CorZZ/meta/latticeVectors Dataset {3}
27 /SU2CorZZ/meta/sites Dataset {1, 41}

Listing 5: Example structure of an observable output file. The data shown here
is the output which is generated from the task file shown in Lst. 1. The output
file is stored in HDF5 format. The two groups SU2CorDD and SU2CorZZ (lines 2
and 15) contain the correlation measurements χ00,Λ

i j and χzz,Λ
i j , respectively. Each

measurement is composed of meta information about the lattice (lines 11–14 and
24–27), as well as the measurement data itself (lines 3–10 and 16–23). See text for
details.

lattice. For lattices with Nb basis sites, the dataset would be a list of Nb three-component
vectors capturing the positions of the basis sites b0, . . . , bNb−1. The dataset latticeVectors
is a three-element list of three-component vectors, which contains the lattice vectors a0, a1,
and a2, respectively. The third dataset in the meta information, sites, is an Nb×N total

s matrix
of three-component vectors, where N total

s is the number of lattice sites within the truncation
range around a given reference site (cf. Sec. 4.1). The matrix contains, for every basis site in
the lattice, the list of real-space positions of all lattice sites within the truncation range around
that basis site.

The same order of lattice sites, as stored in the Nb × N total
s matrices described above, is

being used for the storage of the actual correlation measurement results – the purpose of the
meta data is to serve as a label for the measurement data. Any two-spin correlations, e.g.
χ

zz,Λ
i j , are measured for lattice site i running over all basis sites of the lattice and lattice site j

running over all sites within the truncation range around site i, thus resulting in an Nb×N total
s

matrix of correlation data. Every measurement is stored in an HDF5 group of the form
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/SU2CorZZ/data/measurement_0 Group
/SU2CorZZ/data/measurement_0/cutoff Attribute {1}
/SU2CorZZ/data/measurement_0/data Dataset {1, 41}

where the integer number trailing the group name measurement_0 is simply a unique iden-
tifier number. The correlation data is stored in the Nb × N total

s dataset data, while the cutoff
value of the correlation measurement is stored in the attribute cutoff. Throughout the solu-
tion of the pf-FRG flow equations, whenever a measurement is recorded at some cutoff value
Λ, a new data group with a new unique identifier is created in the “.obs” file.

6 Examples

In the previous sections we have discussed the underlying theory of the pseudofermion func-
tional renormalization group, its numerical implementation, and the general usage of the Spin-
Parser software. We round up the presentation in this section by showing two fully worked
out examples on how to study aspects of quantum magnetism with the help of the SpinParser
software. The first example, which we discuss in Sec. 6.1, illustrates the use of the SpinParser
software for the analysis of a three-dimensional quantum spin model of competing nearest and
next-nearest neighbor Heisenberg interactions on the cubic lattice. Depending on the ratio of
the two types of interactions, the model can host different magnetization textures in its ground
state. In the second example, Sec. 6.2, we showcase a model with more intricate spin inter-
actions which break the inversion symmetry of lattice bonds, namely the kagome Heisenberg
antiferromagnet with additional Dzyaloshinskii-Moriya (DM) interactions. Such competing
interactions can naturally arise in realistic materials which attempt to emulate the kagome
Heisenberg antiferromagnet, and their presence raises the question of how stable the spin liq-
uid ground state of the pure kagome Heisenberg antiferromagnet is against perturbation by
DM interactions.

6.1 J1-J2-Heisenberg model on the cubic lattice

One of the simplest spin model Hamiltonians to suppress magnetic order in the ground state
is the J1-J2-Heisenberg model on the two-dimensional square lattice. The suppression of
magnetic long range order on the bipartite square lattice is due to the competition of anti-
ferromagnetic nearest neighbor and next-nearest neighbor interactions, which are inherently
incompatible with each other. While the nearest neighbor interactions would favor a Néel
ground state, the next-nearest neighbor interactions would favor collinear antiferromagnetic
order. As a consequence, if neither one of the interactions is clearly dominant, and the ratio
of nearest neighbor interactions J1 and next-nearest neighbor interactions J2 is approximately
J2/J1 = 0.5, the system is found to exhibit a paramagnetic ground state (with details about
the precise nature of that ground state phase diagram still under debate) [5,18].

In this example, we consider the extension of the aforementioned J1-J2-Heisenberg model
onto the three-dimensional simple cubic lattice. Our model is captured by the microscopic
Hamiltonian

H = J1

∑

〈i, j〉

SiS j + J2

∑

〈〈i, j〉〉

SiS j , (51)

where the first sum runs over all pairs of nearest neighbor sites in the cubic lattice and the
second sum runs over pairs of next-nearest neighbors, see Fig. 8a. With the increased spatial
dimension leading to a greater number of interacting neighbor sites – 6 nearest neighbors
and 12 next-nearest neighbors, compared to 4 nearest and next-nearest neighbors each on
the square lattice – one expects a stronger tendency of the system towards the formation of
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(a) (b)

Figure 8: Spin model definitions on the cubic lattice and on the kagome lattice. (a)
The J1-J2-Heisenberg model on the cubic lattice is defined by a single-site lattice unit
cell (site indicated in red), three nearest neighbor interactions per unit cell (thick
red lines), and six next-nearest neighbor interactions per unit cell (dashed red lines).
In total, each site has 6 nearest neighbors and 12 next-nearest neighbors (4 in each
gray-shaded plane). (b) The Heisenberg-DM model on the kagome lattice has a three-
site unit cell (red sites) with six nearest-neighbor interactions per unit cell (thick red
lines). The DM interactions bDi j · (Si × S j) are directed from site i to j according to
the red arrows, with the DM vector bD pointing out of the plane for all interactions.

magnetic order. Indeed, it is observed both in the classical [63] and quantum [29,64] version of
the model that there is a direct transition from the Néel ground state configuration at dominant
J1 into the collinear antiferromagnetic order at large J2.

Our goal is to confirm the existence of the transition from the Néel state to the collinear
antiferromagnetic order with the help of the SpinParser software. The model Hamiltonian
Eq. (51) has previously been investigated in Ref. [29] by means of an independent implemen-
tation of the pf-FRG algorithm, which allows us to benchmark our results. In order to set up
the calculation, we define the cubic lattice as well as the J1-J2-Heisenberg spin model in the
XML structures described in Secs. 5.2 and 5.3, respectively:
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<unitcell name="cubic">
<primitive x="1" y="0" z="0" />
<primitive x="0" y="1" z="0" />
<primitive x="0" y="0" z="1" />

<site x="0" y="0" z="0" />

<bond from="0" to="0" da0="1" da1="0" da2="0" />
<bond from="0" to="0" da0="0" da1="1" da2="0" />
<bond from="0" to="0" da0="0" da1="0" da2="1" />

</unitcell>

<model name="cubic-j1j2heisenberg">
<interaction parameter="j1" from="0,0,0,0" to="1,0,0,0" type="←-

heisenberg" />
<interaction parameter="j1" from="0,0,0,0" to="0,1,0,0" type="←-

heisenberg" />
<interaction parameter="j1" from="0,0,0,0" to="0,0,1,0" type="←-

heisenberg" />
<interaction parameter="j2" from="0,0,0,0" to="0,1,-1,0" type="←-

heisenberg" />
<interaction parameter="j2" from="0,0,0,0" to="0,1,1,0" type="←-

heisenberg" />
<interaction parameter="j2" from="0,0,0,0" to="1,-1,0,0" type="←-

heisenberg" />
<interaction parameter="j2" from="0,0,0,0" to="1,0,-1,0" type="←-

heisenberg" />
<interaction parameter="j2" from="0,0,0,0" to="1,0,1,0" type="←-

heisenberg" />
<interaction parameter="j2" from="0,0,0,0" to="1,1,0,0" type="←-

heisenberg" />
</model>

In fact, the definition of both the lattice and the spin model are already included
in the default installation of the SpinParser software; they are located in the files
$SPINPARSER/res/lattices.xml and $SPINPARSER/res/models.xml, respectively,
where $SPINPARSER is the root directory of the SpinParser installation.

In the next step, we set up the actual task file for the calculation as detailed in Sec. 5.1. To
this end, we prepare the file $SPINPARSER/examples/cubic-j1j2.xml with the following
content:

<task>
<parameters>

<frequency discretization="exponential">
<min>0.005</min>
<max>50.0</max>
<count>64</count>

</frequency>
<cutoff discretization="exponential">

<max>50.0</max>
<min>0.01</min>
<step>0.98</step>
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</cutoff>
<lattice name="cubic" range="7"/>
<model name="cubic-j1j2heisenberg" symmetry="SU2">

<j1>1.000000</j1>
<j2>0.000000</j2>

</model>
</parameters>
<measurements>

<measurement name="correlation"/>
</measurements>

</task>

The parameters chosen here, i.e., a frequency discretization of N total
ω = 128 points (Nω = 64

positive frequencies) and a lattice truncation range of L = 7 bonds, are typically expected to
give good results. Yet, in order to speed up the calculation for phase diagram scans, it might
be appropriate to perform calculations at reduced precision; similarly, in order to check the
convergence for production-quality calculations, it might be advised to increase the lattice
truncation range or the frequency discretization. We defined exchange constants J1 = 1.0
and J2 = 0.0 in the example task file above – these values are of course only exemplary and
should be adjusted as needed. We are now prepared run the actual calculation by invoking
the command

$SPINPARSER/bin/SpinParser $SPINPARSER/examples/cubic-j1j2.xml

which produces the HDF5-structured output file at $SPINPARSER/examples/cubic-j1j2
.obs. Executing the calculation takes approximately 25 core hours on an Intel Xeon Phi 7250-
F Knights Landing processor (68 physical cores, 1.4 GHz).

We extract the two-spin correlation function χzz,Λ
i j from the HDF5 datasets /SU2CorZZ/

data/measurement_*/data within the result file (see Sec. 5.4 for details), and with the
help of the lattice site positions stored in the dataset /SU2CorZZ/meta/sites we perform
a Fourier transformation to obtain the momentum-resolved structure factor χΛ(k) as defined
in Eq. (31). Comparing the results for J2 = 0 and J2 = 0.5, we observe decisively different
magnetic ordering patterns: At vanishing next-nearest neighbor interactions, the ground state
order is simply the Néel configuration, which is associated with structure factor peaks at the
corners of the Brillouin zone (see inset of Fig. 9a). Once J2 becomes sizable, at J2 = 0.5, the
ground state is formed by collinear order, which consists of an antiferromagnetic arrangement
of ferromagnetic columns of spins. Its structure factor exhibits peaks on the centers of the
Brillouin zone edges (inset of Fig. 9b).

A key indicator for the nature of the ground state of the system in pf-FRG calculations
is the qualitative behavior of the flow, discriminating whether it runs smoothly to the lowest
cutoff value or whether it exhibits a breakdown of the smooth flow at some finite critical cutoff
Λc . The latter scenario is associated with spontaneous symmetry breaking and the onset of
magnetic order, which we expect to observe on the cubic lattice. Indeed, when plotting the
evolution of the dominant component in the structure factor as a function of the cutoff Λ,
a pronounced breakdown becomes visible at Λc = 0.72 for J2 = 0.0 (Fig. 9a). Similarly, in
the collinearly ordered ground state at J2 = 0.5, a flow breakdown manifests (although less
pronounced) at Λc = 0.3. The same values for the critical cutoff Λc have previously been
identified in Ref. [29] in the context of the extended J1-J2-J3-Heisenberg model on the cubic
lattice.
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Figure 9: Renormalization group flow of the two-spin correlations in the J1-J2-
Heisenberg model on the cubic lattice. (a) Flow of the peak susceptibility at fixed
J1 = 1.0 and vanishing next-nearest neighbor interaction J2 = 0, exhibiting a flow
breakdown at Λc = 0.72. (b) Flow of the peak susceptibility at J2 = 0.5, with a
breakdown at Λc = 0.3. The insets indicate regions within the Brillouin zone where
the intensity of the structure factor is within the top 20% of its maximum value,
plotted at Λc for (a) J2 = 0.0 and (b) J2 = 0.5.

6.2 Kagome antiferromagnet with Dzyaloshinskii-Moriya interactions

We now consider a second example, which sets itself apart from the previous one by its greatly
reduced symmetries. On top of the SU(2)-symmetric Heisenberg interactions, which we have
seen in the previous example, we now introduce Dzyaloshinskii-Moriya (DM) interactions,
which break the lattice inversion symmetry as well as the SU(2) spin rotation symmetry of the
Hamiltonian. Specifically, we consider the kagome Heisenberg antiferromagnet augmented by
DM interactions, which can be captured by the Hamiltonian

H = J
∑

〈i, j〉

SiS j + D
∑

〈i, j〉

bDi j ·
�

Si × S j

�

, (52)

where we fix J = 1 and the sums run over all pairs of nearest neighbor sites i and j on
the kagome lattice with a sense of direction as indicated in Fig. 8b, with the DM vectors bDi j
pointing out of the lattice plane and having unit length.

It is well agreed upon that the kagome Heisenberg antiferromagnet, which is the limiting
case of our model Hamiltonian Eq. (52) at D = 0, harbors a quantum spin liquid ground
state at low temperatures – although the precise nature of the spin liquid state remains under
debate [5]. With the microscopic Hamiltonian of the kagome Heisenberg antiferromagnet
being strikingly simple, much effort went into the search for material candidates which could
potentially realize the model. One of the hitherto cleanest material realizations is the so-called
herbertsmithite compound [65]. However, even herbertsmithite is not a perfect realization of
the kagome Heisenberg antiferromagnet, and finite DM interactions beyond the dominant
Heisenberg exchange terms can be expected [66,67]. From a theoretical perspective it is thus
interesting to study the stability of the spin liquid ground state of the unperturbed kagome
Heisenberg antiferromagnet against finite DM interactions [47,48,68,69]. Such analysis has
been performed by means of the pf-FRG approach in Refs. [47] and [48]. Here, we review
the calculations as an example for a model which breaks both spin rotation symmetry and
lattice inversion symmetry – an intricate model, which spotlights the wide applicability of the
SpinParser software.

The calculation is performed as follows. First, we define the kagome lattice as well as the
Heisenberg-DM spin model in the XML structures described in Secs. 5.2 and 5.3, respectively:

<unitcell name="kagome">
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<primitive x="2" y="0" z="0" />
<primitive x="1" y="sqrt(3)" z="0" />
<primitive x="0" y="0" z="1" />

<site x="0" y="0" z="0" />
<site x="1" y="0" z="0" />
<site x="1/2" y="sqrt(3)/2" z="0" />

<bond from="0" to="1" da0="0" da1="0" da2="0" />
<bond from="0" to="2" da0="0" da1="0" da2="0" />
<bond from="1" to="2" da0="0" da1="0" da2="0" />
<bond from="1" to="0" da0="1" da1="0" da2="0" />
<bond from="2" to="0" da0="0" da1="1" da2="0" />
<bond from="2" to="1" da0="-1" da1="1" da2="0" />

</unitcell>

<model name="kagome-DM">
<interaction parameter="j" from="0,0,0,1" to="0,0,0,0" type="←-

heisenberg" />
<interaction parameter="d" from="0,0,0,1" to="0,0,0,0" type="xy←-

" />
<interaction parameter="d" from="0,0,0,1" to="0,0,0,0" type="-←-

yx" />
<interaction parameter="j" from="0,0,0,0" to="0,0,0,2" type="←-

heisenberg" />
<interaction parameter="d" from="0,0,0,0" to="0,0,0,2" type="xy←-

" />
<interaction parameter="d" from="0,0,0,0" to="0,0,0,2" type="-←-

yx" />
<interaction parameter="j" from="-1,0,0,1" to="0,0,0,0" type="←-

heisenberg" />
<interaction parameter="d" from="-1,0,0,1" to="0,0,0,0" type="←-

xy" />
<interaction parameter="d" from="-1,0,0,1" to="0,0,0,0" type="-←-

yx" />
<interaction parameter="j" from="0,0,0,0" to="0,-1,0,2" type="←-

heisenberg" />
<interaction parameter="d" from="0,0,0,0" to="0,-1,0,2" type="←-

xy" />
<interaction parameter="d" from="0,0,0,0" to="0,-1,0,2" type="-←-

yx" />
<interaction parameter="j" from="0,0,0,2" to="0,0,0,1" type="←-

heisenberg" />
<interaction parameter="d" from="0,0,0,2" to="0,0,0,1" type="xy←-

" />
<interaction parameter="d" from="0,0,0,2" to="0,0,0,1" type="-←-

yx" />
<interaction parameter="j" from="0,-1,0,2" to="-1,0,0,1" type="←-

heisenberg" />
<interaction parameter="d" from="0,-1,0,2" to="-1,0,0,1" type="←-

xy" />
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<interaction parameter="d" from="0,-1,0,2" to="-1,0,0,1" type="←-
-yx" />

</model>

Both definitions are included in the default installation of the SpinParser software. They
are stored within in the files $SPINPARSER/res/lattices.xml and $SPINPARSER/res/
models.xml, respectively, where $SPINPARSER is the root directory of the SpinParser instal-
lation. While the lattice definition in the code listing above is straightforward, the definition of
the spin interactions is more involved. The Heisenberg interactions are defined in close anal-
ogy to the previous example on the cubic lattice in Sec. 6.1. The definition of DM interactions
requires more attention: Since the DM interactions break the lattice bond inversion symmetry
and carry a sense of direction, the order of sites in the from and to attributes becomes rele-
vant, see the definition of exchange terms in Eq. (47); for the six nearest neighbor interactions
per unit cell we adopt a convention of bond orientations as illustrated in Fig. 8b. Furthermore,
for the out-of-plane DM vectors in our example, each interaction contains two terms, i.e., the
expression hi j = Di j ·(Si×S j) for the DM vector pointing out of plane, Di j = (0,0, 1), amounts
to hi j = S x

i S y
j − S y

i S x
j . Due to the in general arbitrary nature of the DM vector orientation, a

shorthand notation for DM interactions does not exist in SpinParser. Instead, on every bond,
the two terms of the interaction (type="xy" and type="-yx") are defined separately.

With the model definition set up, we now prepare a task file $SPINPARSER/examples/
kagome-DM.xml as described in Sec. 5.1:

<task>
<parameters>

<frequency discretization="exponential">
<min>0.005</min>
<max>50.0</max>
<count>64</count>

</frequency>
<cutoff discretization="exponential">

<max>50.0</max>
<min>0.01</min>
<step>0.98</step>

</cutoff>
<lattice name="kagome" range="7"/>
<model name="kagome-DM" symmetry="TRI">

<j>1.000000</j>
<d>0.000000</d>

</model>
</parameters>
<measurements>

<measurement name="correlation"/>
</measurements>

</task>

Note that due to the broken spin rotation symmetry of our model, we need to employ the
most general of the numerical backends, which is suitable for general models of two-spin
interactions as captured by the Hamiltonian Eq. (1). The choice of the numerical backend
is specified in the attribute symmetry="TRI" in the code listing above. Further, we defined
the coupling constants to be J = 1.0 and D = 0.0; they are, of course, subject to change as
we explore the parameter space of the model. Owed to the reduced symmetry of the model,
the calculation is significantly more complex than in the previous example. The calculation
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Figure 10: Renormalization group flow of the two-spin correlations in the
Heisenberg-DM model on the kagome lattice. (a) Flow of the peak susceptibility
at vanishing DM interactions D = 0. (b) Flow of the peak susceptibility at D = 0.5,
indicating a flow breakdown at Λc = 0.39. The insets of panels (a) and (b) show
the spin correlations across the entire extended Brillouin zone, plotted at Λ= 0 and
Λ = Λc , respectively. The color code is normalized independently, ranging from low
intensity (dark blue) to high intensity (white). (c) Scaling of the onsite correlation
χΛii with the lattice truncation range L. Data shown is for L = 3 (lightest color),
L = 5, and L = 7 (opaque color).

takes approximately 2,500 core hours on Intel Xeon Phi 7250-F Knights Landing processors
(68 cores, 1.4 GHz) when parallelized across 4 distributed memory nodes with a total of 272
physical CPU cores.

We now extract the spin correlation measurements and the spin structure factor. In
the output file $SPINPARSER/examples/kagome-DM.obs, with our choice of the numeri-
cal backend, the lattice site-resolved spin correlations χzz,Λ

i j are stored in the HDF5 datasets
/TRICorZZ/data/measurement_*/data, as described in Sec. 5.4. Similarly, we gather the
two remaining components χ x x ,Λ

i j and χ y y,Λ
i j to compute the structure factor χΛ(k). Unlike

in the previous example of the cubic lattice model, where the ground state would always ex-
hibit magnetic order regardless of the choice of parameters, the Heisenberg-DM model on the
kagome lattice is expected to host a spin liquid ground state in the vicinity of the Heisenberg
limit D = 0.0. The quantum spin liquid ground state, which preserves the spin rotation sym-
metry of the system, manifests in a smooth flow of the spin correlations down to the lowest
cutoff, as shown for the peak susceptibility χΛmax at D = 0.0 in Fig. 10a. At the same time,
the momentum space structure of the correlations remains mostly featureless, exhibiting only
broad maxima around the edge of the extended Brillouin zone (inset of Fig. 10a); this is a
well known aspect of the kagome Heisenberg antiferromagnet, which has been observed in a
number of pf-FRG studies [26, 28, 47, 48]. Increasing the DM interaction strength D, on the
other hand, is expected to eventually give rise to magnetic order. Indeed, setting D = 0.5,
we observe a flow breakdown at finite Λc = 0.39 indicative of spontaneous symmetry break-
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ing. The associated structure factor at the critical scale exhibits sharply localized peaks at the
boundary of the extended Brillouin zone, see Fig. 10b.

Naturally, there must exist a phase boundary between the spin liquid phase around D = 0.0
and the magnetically ordered phase near D = 0.5. How can we localize such boundary? The
flow breakdown in pf-FRG calculations for intricate magnetic order can sometimes be subtle
– in the present example (Fig. 10b), the breakdown is much less pronounced as e.g. in the
Heisenberg antiferromagnet on the cubic lattice (Fig. 9a). In the past, it has proven useful to
assess the scaling of the onsite spin correlations χΛii with the lattice truncation range L [37,46].
The expression for the onsite spin correlations contains contributions from all vertex functions
within the lattice truncation range. If correlations in the system are only short-ranged, the
result quickly converges in the truncation range L. If, on the other hand, correlations become
long-ranged – i.e., for cutoff values Λ < Λc in systems which exhibit magnetic order – the
convergence behavior suddenly changes, and convergence in the truncation range L becomes
slower. This is illustrated in Fig. 10c, where we plot the onsite spin correlations for several
values of the DM interaction strength D. For interactions D ≤ 0.1 the result is fully converged
for all values of the truncation range L = 3,5, 7. In contrast, at D ≥ 0.2, a change in the scaling
behavior becomes visible below some critical scale Λc: At Λ< Λc the curves begin to differ for
different lattice truncation ranges. We can thus conclude that the phase transition lies between
D = 0.1 and D = 0.2. In fact, it has been estimated before by pf-FRG methods [47, 48] and
exact diagonalization [69] that the transition point lies near D ≈ 0.1.

7 Conclusions

We have discussed technical aspects of the pf-FRG algorithm as implemented in the SpinParser
software. With the SpinParser software being the first publicly available implementation of the
pf-FRG algorithm which offers support for the numerical solution of the general spin Hamil-
tonian given in Eq. (1), it marks a significant step in making the study of a broad class of two-
and three-dimensional quantum spin models – which are often notoriously difficult to treat
with established numerical techniques – more accessible. We explained how custom lattice
spin models, as well as other relevant parameters for the computation, can be defined in a
plain-text input format, and we demonstrated the use of the SpinParser software on the basis
of two fully worked out examples.

We have further demonstrated that, despite providing a high-level interface for the spec-
ification of the lattice spin model of interest, the SpinParser software with its underlying nu-
merical architecture remains highly efficient and can be parallelized across a large number
of shared memory and/or distributed memory compute nodes. We illustrated the latter by
showing benchmark results for calculations on up to 1088 CPU cores (16 distributed memory
compute nodes), which indicated only a small parallelization overhead. The high efficiency
of the pf-FRG computations is achieved with the help of an automatic symmetry analysis of
the lattice spin model, which is built into the SpinParser software. The findings of the sym-
metry analysis are leveraged to construct a maximally reduced parametrization of the pseud-
ofermionic vertex functions, which are at the center of any pf-FRG calculation. We provided
benchmark calculations which illustrate the scaling of the computing time as a function of
the lattice truncation range and the frequency discretization – the two main parameters with
regard to the numerical accuracy of the solution – of the vertex functions.

While the SpinParser software can offer an “out-of-the-box” experience for the solution of
many problems of current interest in quantum magnetism, it is not complete: Research on the
pf-FRG algorithm, its methodological advancement, and its numerical implementation is still
ongoing, continuously generating new concepts for refinements or extensions of the method.
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One intriguing aspect for future revisions of the code would be the implementation of the
recently proposed “multiloop” extension of the pf-FRG algorithm [56,70,71]. In combination
with a more careful treatment of the frequency dependence of the vertex functions [72], it
could add a new level of quantitative control to the pf-FRG.

Acknowledgements

The author thanks Dominik Kiese and Simon Trebst for work on related projects which stim-
ulated the development of the code, as well as Daniel Rohe and Edoardo Di Napoli from the
Juelich Supercomputing Centre for consulting on aspects of the numerical implementation.
This work was partially supported by the DFG within the CRC 1238 (project C02). Numerical
simulations were performed on the JURECA Booster at the Forschungszentrum Juelich.

References

[1] L. Balents, Spin liquids in frustrated magnets, Nature 464, 199 (2010),
doi:10.1038/nature08917.

[2] J. Knolle and R. Moessner, A field guide to spin liquids, Annu. Rev. Condens. Matter Phys.
10, 451 (2019), doi:10.1146/annurev-conmatphys-031218-013401.

[3] C. Broholm, R. J. Cava, S. A. Kivelson, D. G. Nocera, M. R. Norman and T. Senthil,
Quantum spin liquids, Science 367, eaay0668 (2020), doi:10.1126/science.aay0668.

[4] X.-G. Wen, Quantum orders and symmetric spin liquids, Phys. Rev. B 65, 165113 (2002),
doi:10.1103/PhysRevB.65.165113.

[5] L. Savary and L. Balents, Quantum spin liquids: A review, Rep. Prog. Phys. 80, 016502
(2016), doi:10.1088/0034-4885/80/1/016502.

[6] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. 321, 2 (2006),
doi:10.1016/j.aop.2005.10.005.

[7] M. Hermanns, I. Kimchi and J. Knolle, Physics of the Kitaev model: Fractionalization,
Dynamic correlations, and material connections, Annu. Rev. Condens. Matter Phys. 9, 17
(2018), doi:10.1146/annurev-conmatphys-033117-053934.

[8] K. O’Brien, M. Hermanns and S. Trebst, Classification of gapless Z2 liq-
uids in three-dimensional Kitaev models, Phys. Rev. B 93, 085101 (2016),
doi:10.1103/PhysRevB.93.085101.

[9] J. Nasu, M. Udagawa and Y. Motome, Vaporization of Kitaev spin liquids, Phys. Rev. Lett.
113, 197205 (2014), doi:10.1103/PhysRevLett.113.197205.

[10] T. Eschmann, P. A. Mishchenko, K. O’Brien, T. A. Bojesen, Y. Kato, M. Hermanns, Y. Mo-
tome and S. Trebst, Thermodynamic classification of three-dimensional Kitaev spin liquids,
Phys. Rev. B 102, 075125 (2020), doi:10.1103/PhysRevB.102.075125.

[11] S. M. Winter, Y. Li, H. O. Jeschke and R. Valentí, Challenges in design of Kitaev materi-
als: Magnetic interactions from competing energy scales, Phys. Rev. B 93, 214431 (2016),
doi:10.1103/PhysRevB.93.214431.

45

https://scipost.org
https://scipost.org/SciPostPhysCodeb.5
https://doi.org/10.1038/nature08917
https://doi.org/10.1146/annurev-conmatphys-031218-013401
https://doi.org/10.1126/science.aay0668
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1088/0034-4885/80/1/016502
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1146/annurev-conmatphys-033117-053934
https://doi.org/10.1103/PhysRevB.93.085101
https://doi.org/10.1103/PhysRevLett.113.197205
https://doi.org/10.1103/PhysRevB.102.075125
https://doi.org/10.1103/PhysRevB.93.214431


SciPost Phys. Codebases 5 (2022)

[12] S. M. Winter, A. A. Tsirlin, M. Daghofer, J. van den Brink, Y. Singh, P. Gegenwart and R.
Valentí, Models and materials for generalized Kitaev magnetism, J. Phys.: Condens. Matter
29, 493002 (2017), doi:10.1088/1361-648X/aa8cf5.

[13] S. Trebst and C. Hickey, Kitaev materials, Phys. Rep. 950, 1 (2022),
doi:10.1016/j.physrep.2021.11.003.

[14] Y.-C. He, M. P. Zaletel, M. Oshikawa and F. Pollmann, Signatures of Dirac cones in
a DMRG study of the Kagome Heisenberg model, Phys. Rev. X 7, 031020 (2017),
doi:10.1103/PhysRevX.7.031020.

[15] A. M. Läuchli, J. Sudan and R. Moessner, S = 1/2 Kagome Heisenberg antiferromagnet
revisited, Phys. Rev. B 100, 155142 (2019), doi:10.1103/PhysRevB.100.155142.

[16] S. R. White, Density matrix formulation for quantum renormalization groups, Phys. Rev.
Lett. 69, 2863 (1992), doi:10.1103/PhysRevLett.69.2863.

[17] U. Schollwöck, The density-matrix renormalization group, Rev. Mod. Phys. 77, 259
(2005), doi:10.1103/RevModPhys.77.259.

[18] J. Reuther and P. Wölfle, J1-J2 frustrated two-dimensional Heisenberg model: Random
phase approximation and functional renormalization group, Phys. Rev. B 81, 144410
(2010), doi:10.1103/PhysRevB.81.144410.

[19] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden and K. Schönhammer, Functional
renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84, 299
(2012), doi:10.1103/RevModPhys.84.299.

[20] M. L. Baez and J. Reuther, Numerical treatment of spin systems with unrestricted spin
length S: A functional renormalization group study, Phys. Rev. B 96, 045144 (2017),
doi:10.1103/PhysRevB.96.045144.

[21] F. L. Buessen, D. Roscher, S. Diehl and S. Trebst, Functional renormalization group ap-
proach to SU(N) Heisenberg models: Real-space renormalization group at arbitrary N,
Phys. Rev. B 97, 064415 (2018), doi:10.1103/PhysRevB.97.064415.

[22] D. Roscher, F. L. Buessen, M. M. Scherer, S. Trebst and S. Diehl, Functional renormalization
group approach to SU(N) Heisenberg models: Momentum-space renormalization group for
the large-N limit, Phys. Rev. B 97, 064416 (2018), doi:10.1103/PhysRevB.97.064416.

[23] J. Reuther and R. Thomale, Functional renormalization group for the anisotropic triangu-
lar antiferromagnet, Phys. Rev. B 83, 024402 (2011), doi:10.1103/PhysRevB.83.024402.

[24] J. Reuther, P. Wölfle, R. Darradi, W. Brenig, M. Arlego and J. Richter, Quantum phases of
the planar antiferromagnetic J1-J2-J3 Heisenberg model, Phys. Rev. B 83, 064416 (2011),
doi:10.1103/PhysRevB.83.064416.

[25] J. Reuther, D. A. Abanin and R. Thomale, Magnetic order and paramagnetic phases
in the quantum J1-J2-J3 honeycomb model, Phys. Rev. B 84, 014417 (2011),
doi:10.1103/PhysRevB.84.014417.

[26] R. Suttner, C. Platt, J. Reuther and R. Thomale, Renormalization group analysis of com-
peting quantum phases in the J1-J2 Heisenberg model on the Kagome lattice, Phys. Rev. B
89, 020408 (2014), doi:10.1103/PhysRevB.89.020408.

46

https://scipost.org
https://scipost.org/SciPostPhysCodeb.5
https://doi.org/10.1088/1361-648X/aa8cf5
https://doi.org/10.1016/j.physrep.2021.11.003
https://doi.org/10.1103/PhysRevX.7.031020
https://doi.org/10.1103/PhysRevB.100.155142
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/RevModPhys.77.259
https://doi.org/10.1103/PhysRevB.81.144410
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1103/PhysRevB.96.045144
https://doi.org/10.1103/PhysRevB.97.064415
https://doi.org/10.1103/PhysRevB.97.064416
https://doi.org/10.1103/PhysRevB.83.024402
https://doi.org/10.1103/PhysRevB.83.064416
https://doi.org/10.1103/PhysRevB.84.014417
https://doi.org/10.1103/PhysRevB.89.020408


SciPost Phys. Codebases 5 (2022)

[27] Y. Iqbal, H. O. Jeschke, J. Reuther, R. Valentí, I. I. Mazin, M. Greiter and R. Thomale, Para-
magnetism in the Kagome compounds (Zn,Mg,Cd)Cu3(OH)6Cl2, Phys. Rev. B 92, 220404
(2015), doi:10.1103/PhysRevB.92.220404.

[28] F. L. Buessen and S. Trebst, Competing magnetic orders and spin liquids in two- and three-
dimensional Kagome systems: Pseudofermion functional renormalization group perspective,
Phys. Rev. B 94, 235138 (2016), doi:10.1103/PhysRevB.94.235138.

[29] Y. Iqbal, R. Thomale, F. Parisen Toldin, S. Rachel and J. Reuther, Functional renormaliza-
tion group for three-dimensional quantum magnetism, Phys. Rev. B 94, 140408 (2016),
doi:10.1103/PhysRevB.94.140408.

[30] Y. Iqbal, P. Ghosh, R. Narayanan, B. Kumar, J. Reuther and R. Thomale, Inter-
twined nematic orders in a frustrated ferromagnet, Phys. Rev. B 94, 224403 (2016),
doi:10.1103/PhysRevB.94.224403.

[31] Y. Iqbal, T. Müller, K. Riedl, J. Reuther, S. Rachel, R. Valentí, M. J. P. Gingras, R.
Thomale and H. O. Jeschke, Signatures of a gearwheel quantum spin liquid in a spin-
1/2 pyrochlore molybdate Heisenberg antiferromagnet, Phys. Rev. Mat. 1, 071201 (2017),
doi:10.1103/PhysRevMaterials.1.071201.

[32] F. L. Buessen, M. Hering, J. Reuther and S. Trebst, Quantum spin liquids in
frustrated spin-1 diamond antiferromagnets, Phys. Rev. Lett. 120, 057201 (2018),
doi:10.1103/PhysRevLett.120.057201.

[33] Y. Iqbal, T. Müller, H. O. Jeschke, R. Thomale and J. Reuther, Stability of the spiral spin
liquid in MnSc2S4, Phys. Rev. B 98, 064427 (2018), doi:10.1103/PhysRevB.98.064427.

[34] P. Ghosh, Y. Iqbal, T. Müller, R. T. Ponnaganti, R. Thomale, R. Narayanan, J. Reuther,
M. J. P. Gingras and H. O. Jeschke, Breathing chromium spinels: A showcase for
a variety of pyrochlore Heisenberg Hamiltonians, npj Quantum Mater. 4, 63 (2019),
doi:10.1038/s41535-019-0202-z.

[35] Y. Iqbal, T. Müller, P. Ghosh, M. J. P. Gingras, H. O. Jeschke, S. Rachel, J. Reuther and R.
Thomale, Quantum and classical phases of the pyrochlore Heisenberg model with competing
interactions, Phys. Rev. X 9, 011005 (2019), doi:10.1103/PhysRevX.9.011005.

[36] N. Niggemann, M. Hering and J. Reuther, Classical spiral spin liquids as a possible route to
quantum spin liquids, J. Phys.: Condens. Matter 32, 024001 (2019), doi:10.1088/1361-
648X/ab4480.

[37] D. Kiese, F. L. Buessen, C. Hickey, S. Trebst and M. M. Scherer, Emergence and stability
of spin-valley entangled quantum liquids in Moiré heterostructures, Phys. Rev. Research 2,
013370 (2020), doi:10.1103/PhysRevResearch.2.013370.
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