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We study a variation of the Trotter-Suzuki decomposition, in which a Hamiltonian exponential is approximated
by an ordered product of two-qubit operator exponentials such that the Trotter step size is enhanced for a small
number of terms. Such decomposition directly reflects hardware constraints of distributed quantum computers,
where operations on monolithic quantum devices are fast compared to entanglement distribution across separate
nodes using interconnects. We simulate nonequilibrium dynamics of transverse-field Ising and XY spin chain
models and investigate the impact of locally increased Trotter step sizes that are associated with an increasingly
sparse use of the quantum interconnect. We find that the overall quality of the approximation depends smoothly
on the local sparsity and that the proliferation of local errors is slow. As a consequence, we show that fast
local operations on monolithic devices can be leveraged to obtain an overall improved result fidelity even on
distributed quantum computers where the use of interconnects is costly.
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Introduction. The availability and rapid evolution of gen-
eral purpose quantum computing hardware has lead to
repeated claims of quantum supremacy [1–4]. It gives new
impetus to Feynman’s idea of using quantum computers as
platforms to efficiently simulate the dynamics of quantum
matter [5]. With quantum computers capable enough, the list
of potential applications in physics and beyond is long; rang-
ing from condensed matter physics [6–9] to the simulation
of general quantum field theories [10,11] and from nuclear
physics [12] to quantum chemistry [13–16] and drug discov-
ery [17].

While quantum supremacy has indeed been claimed for
select synthetic problems, current noisy intermediate-scale
quantum (NISQ) devices do not yet exceed the performance
of classical computers for purposeful algorithms like quan-
tum simulation in the spirit of Feynman [18,19]. Applications
on NISQ devices [20] are typically hindered by finite co-
herence times and insufficient gate precision, as well as by
the overall small number of available qubits. A crucial step
in surpassing the size limitation of current-generation quan-
tum computers will be the transition to distributed quantum
computers [21,22]. Similar to the limitations of monolithic
NISQ devices, however, near-term interconnect hardware that
is required for the facilitation of quantum gates across dis-
tributed quantum processing units (QPUs, cf. Fig. 1) is also
facing challenges. Most notably, current interconnect hard-
ware generates entanglement between remote qubits at a rate
of approximately 182 Hz, which is over an order of magnitude
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slower than single-QPU gate operations [23]. Yet, time is
a critical resource on NISQ architectures: Coherence times
range from O(100 µs) on superconducting qubit platforms to
O(1 s) on trapped ion systems [24,25]. Even on the latter
systems, current interconnect rates appear slow, taking into
account that each remote two-qubit unitary operation may
consume up to three entangled qubit pairs [26]. In addition,
further distillation of remote entanglement may be necessary
to reach the desired fidelity levels [27]. It is therefore of great
importance in quantum algorithm design to limit the number
of required interconnect uses.

In this paper, we study the Trotter-Suzuki decomposition
[28–30] from the perspective of potential implementations
on distributed quantum hardware. The Trotter-Suzuki de-
composition is a widely-used technique for approximating
many-body time evolution operators by a product of two-
qubit operators that can be implemented on NISQ devices.
We propose a variation of the decomposition, in which the
resulting two-qubit operators are no longer treated on equal
footing: To limit the number of intercore operations, two-qubit
gates that are facilitated by a quantum interconnect are treated
at a coarser level of approximation, while a more accurate
approximation, i.e., a shorter Trotter step size, is maintained
for operations that are local within a single compute node. Our
variation of the decomposition, which is illustrated in Fig. 1,
allows us to systematically control the sparsity of interconnect
usage.

For select models of nonequilibrium quantum magnetism,
we demonstrate that a significant enhancement of accuracy
is achieved over the traditional Trotter-Suzuki decomposition
when the Trotter step size is limited by the interconnect rate.
Finally, we also benchmark a scenario in which the sparsity
of interconnect usage is randomized. This emulates the oper-
ation of an interconnect at its latency limit, when due to the
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FIG. 1. Circuit models for uniform (conventional) and sparse
Trotterization schemes on a distributed quantum computer. (a) De-
composition of a uniform Trotter step T into elementary operations
U0 and Uint . (b) A single Trotter step on a distributed QPU with
k = 3 compute nodes. The sparsity parameter n denotes the number
of steps in the node-local Trotter operator (blue) that are performed
before a single intercore operation (orange). (c) Stochastic sparse
Trotterization on k = 3 distributed compute nodes with step sizes
drawn from a random distribution (arguments of node-local Trotter
steps suppressed).

nondeterministic nature of its dead-time after each use it can-
not be guaranteed that the link is immediately available [31].

Models. We consider two distinct models of quantum mag-
netism that are defined on one-dimensional finite chains of L
spin-1/2 operators (σ x

i , σ
y
i , σ z

i ), where i denotes the position
on the chain. The first model is the XY model, governed by
the Hamiltonian HXY = −J

∑
〈i, j〉(σ

x
i σ x

j + σ
y
i σ

y
j ), where 〈, 〉

denotes nearest neighbor pairs on the chain and we fix the
interaction energy scale J = 1. For the time evolution under
this model, we assume that the system is initially prepared in a
domain wall state |↑ . . . ↑↓ . . . ↓〉 in the eigenbasis of σ z. The
second model is the transverse-field Ising (TFI) model with
Hamiltonian HTFI = −J

∑
〈i, j〉 σ z

i σ z
j + h

∑
i σ

x
i . We consider

the case h = 0.5, which we refer to as a slow quench, and
h = 2.0, which we call a fast quench [32,33]. In both cases
for the TFI model, we assume the spin chain to initially be
uniformly ordered with all spins in the |↓〉 state. For quantum
simulations, the spin chain is divided into k sections of equal
size and the qubits are mapped onto k quantum compute nodes
that are interconnected linearly, cf. Fig. 1.

Sparse Trotterization. The model Hamiltonians outlined in
the previous section can be summarized in the generalized no-
tation H = ∑

i H (i)
0 + ∑

〈i, j〉 H (i, j)
int , where H (i)

0 denotes a local

term on site i and H (i, j)
int denotes an interaction term between

neighboring sites i and j; the different terms generally do
not commute. The time evolution operator U (t ) = e−iHt can
be approximated by a sequence T N (t ) of one- and two-qubit
operations U (i)

0 (t ) = e−iH (i)
0 t and U (i, j)

int (t ) = e−iH (i, j)
int t as
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where δt = t
N , T0(t ) = ∏

i U (i)
0 (t ), Teven(t ) = ∏

〈i, j〉even

U (i, j)
int (t ) with the product running over all even pairs

of nearest-neighbor sites (nearest-neighbor pairs on the

spin chain are alternatingly labeled as even and odd) and
Todd(t ) defined analogously. This approximation is known
as the (N-step) second-order Trotter-Suzuki decomposition,
depicted in Fig. 1(a) for a single step (N = 1) [28,29]. The
approximation error scales ∼Nδt3 [34]. For the remainder of
the paper, we shall also refer to this approximation as uniform
Trotterization.

Motivated by the expected constraints for near-term
distributed quantum computing architectures—most impor-
tantly, the slow rate of entanglement generation in quantum
interconnects—we define sparse Trotterization as follows. We
assume a distributed quantum computer to consist of k > 1
compute nodes that are interconnected linearly, cf. Fig. 1.
Interconnects may only be used at a fraction 1/n of the speed
at which each individual compute node operates; we refer to n
as the sparsity. The sparse Trotterization of the time evolution
operator U (t ) is defined as

T N,n
sparse(t )

=
(

k∏
κ=1
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2

)) N
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,

(2)

where T |κ (t ) denotes the usual (uniformly Trotterized) time
evolution within a single compute node κ and 〈i, j〉κ �=κ ′ de-
notes nearest-neighbor pairs of qubits i and j on separate
compute nodes κ and κ ′. By virtue of this definition, the step
size within each compute node remains δt = t

N , yet the inter-
action between qubits on different compute nodes is computed
with larger step size nδt . The corresponding circuit model is
depicted in Fig. 1(b) for one sparse Trotter step with a single
interconnect use.

We further define a stochastic sparse Trotterization, in
which the time steps for remote operations are random-
ized. In this case, time intervals t (κ,κ ′ )

1 , t (κ,κ ′ )
2 , . . . for the

Trotter step size of remote operations on every interconnect
are chosen randomly, and an appropriate number of node-local
time evolution steps with the usual step size δt are inserted
in between. An example of the resulting circuit model is
displayed in Fig. 1(c), and a precise definition is given in
Sec. SI in the Supplemental Material (SM) [35]. This varia-
tion of the Trotter-Suzuki decomposition is intended to reflect
the limitations of interconnects, which generate entanglement
nondeterministically. It allows to stretch the duration of the
node-local time evolution—and thus the number of gates ap-
plied and the absolute computing time—until the required
interconnect becomes available. We note that inhomogeneous
variations of the Trotter-Suzuki decomposition at various or-
ders [36,37] have been studied previously in the context of
quantum chemistry, where different terms in the electronic
Hamiltonian are separated by their energy scale to allow for
a reduction of the Trotter step size within controlled error
bounds [38–41]. Here, our motivation to consider inhomo-
geneous step sizes is rooted in hardware constraints of a
distributed quantum computing platform and separation oc-
curs according to qubit connectivity.

Results. We begin our analysis by investigating the role
of sparsity for the example of the XY model and compare
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FIG. 2. Sparse Trotterization for the XY model with an initial domain wall configuration at the chain center. (a) Fidelity Fref obtained for
the time evolution under uniform Trotterization with various step sizes δt . The fidelity is computed with respect to the reference state obtained
from step size δtref = 0.1. [(b)–(d)] Fidelity of states obtained from sparse Trotterization across k = 2, 3, and 4 distributed quantum compute
nodes at different levels of sparsity n. The node-local step size is δtref = 0.1. Data is obtained for L = 24 spins.

its performance to the conventional uniform Trotterization.
In the following, we shall assume a reference step size of
δtref = 0.1 for node-local operations. The reference step δtref

is chosen large enough such that relevant time scales could
realistically be reached on near-term quantum hardware, and
at the same time it is fine enough to closely reproduce the
exact solution, see Sec. SII of the SM [35]. Note that for
sparse Trotterization, a sparsity of n would then entail that
remote operations are performed with a step size of nδtref . We
evaluate all approximations by computing the associated wave
functions and benchmarking against a reference state |ψref (t )〉
that is obtained from uniform Trotterization with time step
δtref . The quality of any state |ψ (t )〉 can then be quantified by
the reference fidelity Fref = |〈ψref (t )|ψ (t )〉|2. We find that for
increased step size δt = 0.2 in a uniform Trotterization the
fidelity remains acceptable with Fref = 0.97 after evolution
to t = 10 but it diminishes quickly for larger step sizes, see
Fig. 2(a). In contrast, on a distributed architecture with k = 2
compute nodes, introducing a sparsity of n = 2 still yields
a fidelity of Fref = 0.99 after evolution to t = 10 and the
decay in result quality for increasing n is reduced significantly
[Fig. 2(b)]: For example, sparse Trotterization with n = 4
(Fref = 0.93) still performs better than uniform Trotterization
with δt = 0.3 (Fref = 0.77), despite the larger step size for the
interconnect-mediated interaction. The trend not only holds
for larger n, but also as the number of compute nodes k is
increased moderately, see Figs. 2(c) and 2(d).

We make similar observations for the slow TFI quench
model, where the fidelity is significantly more robust against
local sparsity n than against a globally increased step size
[Figs. 3(a) and 3(b)]. The robustness may be related to the
finite magnetization in the initial state, which persists well
beyond t = 10 and can act as a self-stabilizing mechanism
against local perturbations, see Sec. SIII of the SM [35]. In the
fast TFI quench model, the fidelity remains robust for n < 6
before decreasing substantially for n � 6. This still marks a
substantial improvement over a global increase of the step
size δt , especially for small n = 2 and n = 4 [Figs. 3(c) and
3(d)]. We note that the sudden drop in fidelity that occurs upon
crossing the threshold of n � 6 is reminiscent of an abrupt
transition into a quantum chaotic regime that has previously
been identified under a uniform Trotterization when the uni-

form Trotter step size was chosen too large [42]. While the
threshold into the chaotic regime is near δt � 0.2 for the uni-
form Trotterization (cf. Sec. SII of the SM [35]), it is n � 6 in
the sparse Trotterization scheme, which corresponds to a step
size of δt � 0.6 for interconnect-mediated interactions only.
We thus observe a significant enhancement of the quantum
chaos threshold in the sparse Trotterization scheme.

FIG. 3. Sparse Trotterization for TFI quench models. (a) Fidelity
Fref for uniform Trotterization with various step sizes δt , obtained for
the slow TFI quench model. The fidelity is computed with respect to
the reference state obtained from step size δtref = 0.1. (b) Fidelity
obtained from sparse Trotterization at varying sparsity n on k = 2
distributed quantum compute nodes. The node-local step size is
δtref = 0.1. [(c), (d)] Same as panels (a) and (b) but for the fast TFI
quench model. Data is obtained for L = 24 spins.
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FIG. 4. Magnetization and magnetic correlations in the XY
model. (a) Local magnetization at the chain boundary obtained from
sparse Trotterization with n = 4 and uniform Trotterization with
δt = 0.1, 0.4. The curve for sparse Trotterization coincides with the
curve for uniform Trotterization at δt = 0.1. (b) Same as panel (a) but
for the magnetic correlation between chain boundary and bulk. Data
is computed for L = 24 spins across k = 2 compute nodes and a
node-local step size δtref = 0.1.

For practical applications, usually the goal is to accurately
predict physical observables like the time-dependent magne-
tization mz

i (t ) = 〈ψ (t )|σ z
i |ψ (t )〉 or the magnetic correlation

function χ zz
i, j (t ) = 〈ψ (t )|σ z

i σ z
j |ψ (t )〉. We find that deviations

from the magnetization and correlations of the reference state
|ψref (t )〉 are generally small, especially when compared to the
error that accumulates when the step size is globally increased
in a uniform Trotterization. This is illustrated for the mag-
netization of the XY model at the chain boundary mz

0(t ) in
Fig. 4(a) and for the correlation between the chain bound-
ary and the bulk χ zz

0,5(t ) in Fig. 4(b). More systematically,
we compute deviations from the reference magnetization as
�mz

i (t ) = mz
i (t ) − 〈ψref (t )|σ z

i |ψref (t )〉. The maximum devia-
tion maxi,t (|�mz

i (t )|) obtained with sparsity n = (2, 4, 6) is
(0.03, 0.10, 0.22). In contrast, the maximum deviation for
states obtained from uniform Trotterization with analogous
uniform step sizes δt = (0.2, 0.4, 0.6) is significantly larger,
yielding (0.15, 0.58, 0.94). Differences of similar magnitude
are also observed for the deviation of the magnetic correla-
tions. The full space- and time-resolved data for the XY model
and the TFI quench models is shown in Sec. SIII of the SM
[35].

The above results indicate that the quality of the sparse
Trotterization, for the Hamiltonians with two-spin interactions
considered in this paper, smoothly depends on the sparsity
parameter n and on the number of sparse qubit pairs k − 1.
Increasing the Trotter step size only between a small number
of k − 1 qubit pairs does not immediately lead to a prolifer-
ation of the error to levels that are associated with a uniform
increase of δt between all qubit pairs. Such inhibition of error
proliferation is intimately tied to the way that information
spreads in quantum mechanical systems; it has previously
been demonstrated that for systems with short ranged in-
teractions information propagates within a light-cone-like
horizon [43,44]. Whereas the propagation speed is model
dependent, its confining effect on the proliferation of local
errors is universal. As a consequence, the results of a con-
ventional Trotter-Suzuki decomposition with a given step size
δtuniform can be matched or improved by an inhomogeneous

FIG. 5. Stochastic sparse Trotterization of the time evolution for
the XY model at k = 3. The fidelity is shown for different levels
of standard deviation σ . Average sparsity is set to (a) μ = 0.3 and
(b) μ = 0.6, respectively. Data is obtained for L = 18 spins and
node-local step size δtref = 0.1.

decomposition for which the step size is more fine-grained
between most of the qubit pairs (δt < δtuniform) but coarser
between a small number of qubit pairs (δt > δtuniform). For the
models studied here, a reduction of the number of Trotter steps
between a small number of qubit pairs by about 50% seems
feasible.

Finally, we explore the effect of randomness in the stochas-
tic sparse Trotterization. For this purpose, the time steps on the
sparse qubit pairs are drawn from a normal distribution with
mean μ and standard deviation σ . We then calculate Fref and
average it over 1000 instances of randomized configurations
for each parameter set. In practical applications, stochastic
averaging occurs naturally when measurement results are
sampled statistically and interconnect uses on distributed
quantum computing systems are inherently randomized. We
find that despite relatively large variation across the different
randomized configurations, the mean value for the fidelity
remains smooth and systematically depends on μ and σ , see
Fig. 5 for data on the XY model on k = 3 distributed compute
nodes. Data for the TFI quench models is shown in Sec. SI of
the SM [35]. Our data also indicates that randomness σ can
have a more adverse effect than a systematic increase of the
mean step size μ. For example, Fref at (μ, σ ) = (0.3, 0.12) is
comparable to the fidelity achieved for much larger mean step
size in the absence of randomness, (μ, σ ) = (0.6, 0.0), see
Fig. 5. Note that in the former case a step size of less than 0.6
would effectively occur with probability greater than 99% and
a fidelity enhancement would therefore naively be expected.
We speculate that the randomness leads to a reduction in
the cancellation of Trotterization error terms that has been
observed to be relevant for practical models in condensed
matter physics [42,45,46].

Conclusions. We have demonstrated that issues in the im-
plementation of quantum simulations on distributed quantum
computers that arise from slow interconnect hardware can be
mitigated by modifying the Trotter-Suzuki decomposition to
allow for a nonuniform variation of the Trotter step size. For
the XY model and the TFI quench models studied in this
letter, a coarsening of the step size between a small number
of qubit pairs could be compensated by a refinement of the
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step size across the remaining qubit pairs. Notably, the sparse
Trotterization could be applied successfully despite the fact
that the underlying models only have a single principal energy
scale and therefore ruling out Trotter constructions that rely
on scale separation [38–41]. This observation has important
consequences for the implementation of quantum simulations
on distributed quantum computers. Gate operations that are
facilitated by an interconnect are expected to remain slower
than operations within a single node, even as future hardware
generations evolve. To remedy the speed deficiency, instead of
using Trotterization with a uniform time step that is bounded
by the interconnect speed, results of similar or better fidelity
can be obtained by maintaining fine-grained time stepping
within each compute node. For the examples considered here,
we find that a reduction in the number of interconnect uses by
as much as 50% can be viable.

Further, we explored the possibility of exploiting the
nondeterministic dead time after every interconnect use to
perform additional node-local Trotter steps until the intercon-
nect becomes available. Our data suggests that the randomized
execution of additional Trotter steps quickly degrades the

result quality. Unless the overall reduction in total compute
time can compensate for the randomness-induced fidelity loss,
it remains more beneficial to delay the execution of additional
Trotter steps. Further calculations with hardware specific error
models are required to find the optimal tradeoff.

In this paper, we focused on one-dimensional models. To
explore more general applications in the future, it would be
interesting to benchmark the performance of sparse Trotter-
ization for quantum spin models with next-nearest-neighbor
interactions or beyond, as well as for models in higher
dimensions. In such generalizations, increased internode com-
munication is expected and additional optimization of the
interconnect usage may be necessary [47,48].

Further practical applications could also include the sparse
Trotterization of imaginary time evolution [49] or the inte-
gration with variational algorithms [9,44,50] on distributed
quantum computers.
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