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Motivated by the recent synthesis of the spin-1 A-site spinel NiRh2O4, we investigate the classical to
quantum crossover of a frustrated J1-J2 Heisenberg model on the diamond lattice upon varying the spin
length S. Applying a recently developed pseudospin functional renormalization group approach for
arbitrary spin-S magnets, we find that systems with S ≥ 3=2 reside in the classical regime, where the low-
temperature physics is dominated by the formation of coplanar spirals and a thermal (order-by-disorder)
transition. For smaller local moments S ¼ 1 or S ¼ 1=2, we find that the system evades a thermal ordering
transition and forms a quantum spiral spin liquid where the fluctuations are restricted to characteristic
momentum-space surfaces. For the tetragonal phase of NiRh2O4, a modified J1-J−2 -J

⊥
2 exchange model

is found to favor a conventionally ordered Néel state (for arbitrary spin S), even in the presence of a
strong local single-ion spin anisotropy, and it requires additional sources of frustration to explain the
experimentally observed absence of a thermal ordering transition.
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In the field of frustrated magnetism, spinel compounds
of the form AB2X4 (with X ¼ O, Se, S) have long been
appreciated as a source of novel physical phenomena [1].
B-site spinels with magnetic B ions and nonmagnetic A
ions, such as ACr2O4 or AV2O4 (with A ¼ Mg, Zn, Cd),
realize pyrochlore antiferromagnets where geometric frus-
tration manifests itself in a vastly suppressed ordering
temperature relative to the Curie-Weiss temperature.
Conceptually, the pyrochlore Heisenberg antiferromagnet
is a paradigmatic example of a three-dimensional spin
liquid [2,3], in both its classical [4,5] and quantum [6,7]
variants. A-site spinels, with nonmagnetic B ions and
magnetic A ions forming a diamond lattice, have caught
broader attention some ten years ago with the synthesis
of MnSc2S4 [8], FeSc2S4 [8], and CoAl2O4 [9,10] that,
similar to the B-site spinels, exhibit a dramatic suppression
of their ordering temperature. At first sight counterintuitive
due to the unfrustrated nature of the diamond lattice, it was
conceptualized [11] that a sizable next-nearest neighbor
coupling (connecting spins on the fcc sublattices of the
diamond lattice) induces strong geometric frustration.
Indeed, it could be shown that the classical Heisenberg
model with both nearest and next-nearest neighbor
exchange

H ¼ J1
X

hi;ji
SiSj þ J2

X

⟪i;j⟫

SiSj; ð1Þ

exhibits highly-degenerate coplanar spin spiral ground
states for antiferromagnetic J2 > jJ1j=8. Describing a

single coplanar spin spiral by a momentum vector q⃗
(indicating its direction and pitch), the degenerate
ground-state manifold can be captured by a set of q⃗ vectors
that span a “spin spiral surface" in momentum space [11]
as illustrated in Fig. 1. While these spiral surfaces bear a
striking resemblance to Fermi surfaces [12], they are
considerably more delicate objects that can be easily
destroyed by small perturbations to the Hamiltonian (1)
(such as further interactions) or even by fluctuations
[11,13] that will induce an order-by-disorder transition
into a simple magnetically ordered state (typically captured
by a single q⃗ vector). Such a description of the magnetism
of A-site spinels in terms of classical local moments has

FIG. 1. Frustrated diamond lattice antiferromagnet. Left:
Diamond lattice with nearest (J1) and next-nearest neighbor
coupling (J2). A tetragonal distortion of the lattice along one
spatial axis (orthogonal to the plane indicated in red) splits the 12
next-nearest neighbor couplings into a group of 4 in-plane terms
(J−2 ) and 8 out-of-plane terms (J⊥2 ). Right: Spin spiral surface for
J2=jJ1j ¼ 0.73 plotted in the first Brillouin zone (solid lines).
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proved sufficient to capture the physics of the Mn and
Co-based spinels [11,14–16] with local moments S ¼ 5=2
and S ¼ 3=2, respectively, while the physics of FeSc2S4
(S ¼ 2) is dominated by the formation of a spin-orbit
coupled local moment [17,18].
Earlier this year, the synthesis of the first spin-1 A-site

spinel has been reported—NiRh2O4, which is found to
exhibit no thermal ordering transition down to 0.1 K [19],
possibly indicating the formation of a quantum spin liquid
ground state. This motivates us to consider the quantum
version of the minimal exchange model (1) for spins of
arbitrary length S in this manuscript and ask whether
qualitatively new physics arises in the crossover from
the classical to the quantum regime (upon decreasing the
spin length). We work with a pseudofermion functional
renormalization group (PF-FRG) approach [20] that has
been proven capable of handling competing interactions
and emergent spin liquid physics in three-dimensional,
frustrated quantum magnets [21–23], and which has
recently been generalized to spin-S systems [24]. Our
numerical results indicate that a distinct classical to
quantum crossover occurs for spin S ¼ 3=2. While the
low temperature physics is dominated, independent of the
spin length S, by the formation of spin spiral correlations
that manifest themselves in the spin structure factor in the
form of clearly discernible spin spiral surfaces (akin to the
one shown in the right panel of Fig. 1), we find that only for
systems with spin S ≥ 2 do these correlations proliferate
and give rise to a thermal phase transition into a magneti-
cally ordered ground state. For systems with spin S ≤ 1,
we find no indication of a thermal phase transition for
the full extent of the spiral regime J2=J1 > 1=8. The
system with S ¼ 3=2 is found to sit precisely at the border
with no thermal phase transition occurring in the regime
1=8 < J2=J1 ≲ 0.4 and a thermal phase transition into a
magnetically ordered ground state for J2=J1 ≳ 0.4. For the
spin-1 system of interest in the context of NiRh2O4, these
findings support the notion that quantum fluctuations
paired with strong geometric frustration can indeed prevent
the formation of magnetic ordering, and that the system
remains fluctuating amongst different spin spiral states
down to the zero temperature. However, when considering
a slightly modified exchange model with two distinct types
of next-nearest neighbor exchanges that has been proposed
[19] for the tetragonal phase of NiRh2O4, we find that this
picture no longer holds. In fact, we find that the modified
energetics strongly inhibit the spin spiral fluctuations and
instead favor the formation of conventional Néel order for
arbitrary spin length S. We will return to this point towards
the end of the manuscript and discuss how to possibly
consolidate these findings with the experimental absence
of a thermal phase transition.
Pseudofermion FRG.—To explore the exchange model

(1) we employ the PF-FRG approach [20], which recasts
the original spin degrees of freedom in terms of auxiliary

Abrikosov fermions and then applies the well-developed
FRG approach of fermionic systems [25,26]. In the
language of the original spin model, the PF-FRG approach
amounts to a concurrent 1=S and 1=N expansion that
allows us to faithfully capture conventionally ordered
magnetic states (typically favored already in the large-S
limit of the expansion) and spin liquid states (favored in the
alternate large-N limit) and is known to become exact in the
separate limits of large S [24] and large N [27,28]. With
the computational effort scaling quadratically with system
size OðN2

LÞ and quartically with the number of frequencies
OðN4

ωÞ, there is a trade-off in choosing larger system sizes
versus finer energy (temperature) resolution. With a focus
on the finite-temperature ordering tendencies in the RG
flow, we have opted in our numerical simulations for a very
finely spaced frequency mesh of 144 frequencies (in a
logarithmic spacing) and a system size of L ¼ 10 lattice
bonds in every spatial direction (with a total of NL ¼ 981
sites) resulting in a total number of 24,219,720 differential
equations to be integrated for every choice of coupling
parameters.
Phase diagram.—A common starting point for the

analysis of a PF-FRG calculation is to plot the magnetic
susceptibility as a function of frequency cutoff Λ as shown
in Fig. 2 for the exchange model (1) at fixed coupling
J2=jJ1j ¼ 0.73 (relevant to NiRh2O4) and varying spin
length S. For small spins S ¼ 1=2 and S ¼ 1, the suscep-
tibility follows a smooth trajectory down to the lowest
temperature and there is no obvious breakdown of the RG
flow, which is typically interpreted as the absence of any
magnetic ordering transition. Contrarily, for spins S ¼ 3=2
and larger the RG flow exhibits a clear breakdown that
signals the onset of magnetic order. In fact, what is only a
kink in the flow at S ¼ 3=2 becomes a true divergence in
the classical limit (S ¼ 50). We note that the critical
cutoff Λc [29], at which the flow breaks down slightly,
shifts towards larger values for increasing spin length

FIG. 2. Flow of susceptibility for different spin lengths S for
fixed couplings J2=jJ1j ¼ 0.73. The energy scale is normalized
by spin length and coupling strength, such that the flow break-
down occurs at similar scales. The susceptibility is always plotted
at the momentum-space location where it is maximal.
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indicating a stronger ordering tendency as one approaches
the classical limit.
Identifying the critical cutoff Λc with a transition

temperature Tc ¼ Λcπ=2 [21,22], we can map out, for this
classical regime, a finite-temperature phase diagram upon
varying the ratio J2=jJ1j at fixed J1 ¼ −1 [30], as illus-
trated for S ¼ 5=2 (relevant, e.g., to MnSc2S4) in Fig. 3.
Similar to Monte Carlo results [11] for the classical
exchange model, we find a significant suppression of the
transition temperature for 1=8≲ J2=jJ1j≲ 0.4, i.e., upon
entering the spin spiral regime.
To explore the onset of magnetic ordering, it is highly

instructive to track the evolution of the spin structure factor
in the RG flow. This is illustrated for the spin-1 model in
Fig. 4 below, where for fixed coupling J2=jJ1j ¼ 0.73, we
plot the top 20% of the spin structure factor and the color
code reflects the relative strength—blue is low, red is high,
and green is the top 0.4%. For large cutoff Λ, the system
fluctuates widely among many different possible magnetic
orderings. In the low-temperature, small cutoff regime,
however, we find that the features of the spin structure
factor sharpen considerably and become highly reminiscent
of the spin spiral surface found for the ground state of the
classical J1-J2 exchange model [11]. This is visualized for
the spin-1 model for various values of the coupling ratio
J2=jJ1j in Fig. 5 below. Ignoring the coloring scheme for a

moment, one sees that the spin structure factor indeed
retraces the spin spiral surface evolving from a spherical
object for small 1=8 < J2=jJ1j≲ 0.2 to an open surface
that touches the border of the Brillouin zone and forms
holes around the ðqqqÞ-direction for larger J2 to more
linelike objects first around the ðqq0Þ direction for
J2=jJ1j ≈ 1 to two crossing linelike objects in the large
J2 limit. These observations fall in line with results for
the spin structure factor of the classical exchange model
obtained from Monte Carlo simulations [11]. Here, our
focus is on further discerning the subset of points within
the spiral surface where the structure factor is maximally
enhanced, which provides an indicator of the magnetic
ordering that will proliferate in case of a thermal phase
transition and determine the ground state order. Tracking
these points, one finds that beyond the Néel or ferromag-
netic state for vanishing J2, the preferred ordering momenta
go for increasing J2 through a sequence ðqqqÞ →
ðqqqÞ� → ðqq0Þ → ðqq0Þ� → ½qðq=2Þ0� (where the aster-
isk marks an ordering direction around a high-symmetry
direction).
Repeating this analysis for varying spin length S allows us

to map out the general ground-state phase diagram of Fig. 6
as a function of both the coupling ratio J2=jJ1j and spin
length S. We find that the general evolution of the spiral
surface and the sequence of incipient ordering momenta do
not change upon going from the quantum regime (S ¼ 1=2)
deep into the classical regime (S ¼ 50) with only the
boundary between the ðqq0Þ and ðqq0Þ� order showing a
noticeable dependence on the spin length S.
Quantum spiral spin liquids.—With the spin structure

factor revealing the spiral surface, i.e., the manifold of
approximately degenerate spin spirals at low temperatures,
we can systematically investigate the effect of quantum
fluctuations by varying the spin length S. In the classical
limit (S ¼ 50), the spiral surface determined via the spin
structure factor indeed maps out a manifold of similar size
and shape as found in the Luttinger-Tisza calculation
[31,32] for the ground state of the classical model (see
Supplemental Material [33]). Increasing quantum fluctua-
tions with decreasing spin length S, the spiral surfaces
become not only more pronounced but systematically
expand, similar to the trend observed for increasing the
geometric frustration by ramping up J2 in Fig. 5. This
expansion can be readily explained by the fact that quantum
systems gain more energy from antiferromagnetic fluctua-
tions as opposed to ferromagnetic ones [34]. The absence
of a thermal phase transition (see also Fig. 7 of the
Supplemental Material [33]) for the low-spin systems with
S ¼ 1=2 and S ¼ 1 points towards the formation of an
unconventional ground state. In fact, the system remains
fluctuating amongst different spin spiral states down to zero
temperature. We dub this heavily fluctuating quantum state
a quantum spiral spin liquid and note that this is a
decisively different state from the topological paramagnet

FIG. 3. Finite-temperature phase diagram. Shown is the tran-
sition temperature versus the coupling ratio J2=jJ1j for spin
S ¼ 5=2. The background shadings indicates the different types
of ground-state order, see the ground-state phase diagram of Fig. 6.

FIG. 4. Evolution of the spin structure factor with frequency
cutoff Λ for coupling J2=jJ1j ¼ 0.73 and spin S ¼ 1. The colored
regions mark the top 20% of the structure factor. Blue corre-
sponds to 80% of the maximum value, red to 99.6%. The top
0.4% are colored green.
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[35] recently suggested as ground state for the spin-1 model
at hand.
NiRh2O4.—Let us finally turn to the spin-1 A-site spinel

NiRh2O4 [19], whose recent synthesis has motivated the
current study of the spin-S J1-J2 exchange model (1).
NiRh2O4 exhibits strong antiferromagnetic couplings with
a Curie-Weiss temperature of ΘCW ≈ −10 K and shows no
signs of a magnetic ordering transition down to 0.1 K [19].
While one might hope that this makes NiRh2O4 a prime
candidate for the spin liquid physics of frustrated spin-1
diamond antiferromagnets discussed in this manuscript,
there are some indications that the exchange model of
Eq. (1) needs to be further expanded to truthfully capture
the physics of NiRh2O4. For one, a structural transition of
NiRh2O4 around T ≈ 400 K introduces a tetragonal dis-
tortion that requires to discriminate between in-plane J−2
and out of plane J⊥2 next-nearest neighbor couplings
(indicated in Fig. 1). Ab initio theory [19] suggests that
the relevant coupling strengths for NiRh2O4 are given by
J1 ¼ 1, J−2 ¼ 0.73, J⊥2 ¼ −0.91 with antiferromagnetic J1,
J−2 , and ferromagnetic J⊥2 . If, however, we consider these

two distinct types of next-nearest neighbor couplings,
we find both in a Luttinger-Tisza calculation for the
classical limit as well as in our PF-FRG calculations for
all spin S, a conventional, Néel ordered ground state that is
accompanied by a finite-temperature transition for arbi-
trarily small tetragonal splitting of the next-nearest neigh-
bor interactions.
One possible way to defy this magnetic ordering

tendency in the presence of a tetragonal distortion is to
introduce a local single-ion spin anisotropy term
∼D

P
iS

z
i S

z
i as a novel source of frustration [36]. Indeed,

we find in our PF-FRG calculations [37] that the latter
stabilizes an extended paramagnetic phase where the
system effectively decouples into single sites and thus
exhibits a featureless spin structure factor as opposed to
the quantum spiral spin liquid discussed above. For the
original J1-J2 model, the spiral spin liquid gives way to a
featureless paramagnetic regime around D=J1 ≈ 2 (see
Supplemental Material [33]), while the magnetic order in
the presence of a tetragonal splitting is more robust and the
critical value of the single ion anisotropy quickly rises [37].
The resulting phase diagram is displayed in Fig. 7, where

FIG. 6. Ground state phase diagram. The zero-temperature
magnetic ordering (indicated by the coloring) as a function of the
coupling ratio J2=jJ1j and spin lengths varying from the quantum
limit S ¼ 1=2 (bottom) to the classical limit S ¼ 50 (top).

FIG. 5. Spin structure factor of the spin-1 model for varying coupling J2=jJ1j. Depicted are the top 20% of the spin structure factor at
frequency cutoff Λ ¼ 0 with the same color coding applied as in Fig. 4. The spin structure factor shows sharp surfacelike features whose
evolution with J2 reflects the spin spiral surface found in the ground state of the classical J1-J2 exchange model [11]. The maxima
(indicated in green) describe a sequence of enhanced wave vectors (which characterize the onset of magnetic order for spins S ≥ 3=2) at
ðqqqÞ → ðqqqÞ� → ðqq0Þ → ðqq0Þ� → ½qðq=2Þ0� as J2 is increased. Note that since the maximum of the structure factor is typically
hidden inside the finite extent of the depicted manifold (see the right panel of Fig. 4 for an illustration) we project the maximum radially
onto the surface of the manifold.

FIG. 7. Effects of a local spin-anisotropy on the tetragonally
deformed diamond lattice. Displayed is the breakdown scale Λc
of the flow. The absence of a breakdown (Λc ¼ 0) indicates the
absence of magnetic order [38].
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we plot the RG breakdown scale as a function of the
strength of the tetragonal deformation and the local spin
anisotropy D=J1. The finite breakdown scale Λc indicates
magnetic order that is stabilized by a tetragonal deforma-
tion J⊥2 =J−2 ≠ 1. For a finite spin anisotropy, however, an
extended paramagnetic regime (corresponding to the white
regime in Fig. 7 indicating a vanishing Λc) is stabilized.
While for the suggested ab initio parameters for

NiRh2O4 [19] (with J⊥2 =J−2 ¼ −1.25) we do not see a
transition into the paramagnet up to values of D=J1 ≈ 8,
already a relative small reduction of this coupling ratio
(i.e., a smaller tetragonal splitting) would suffice to explain
the absence of magnetic order observed in experiment.
Looking ahead, it is thus desirable to compare our model
calculations with extended ab initio calculations that
explicitly include the single-ion spin anisotropy.
Experimentally, neutron diffraction experiments, such as
the ones recently undertaken for MnSc2S4 [16], could
reveal whether the physics of NiRh2O4 is dominated by
spin spiral liquid correlations or trivial paramagnetism.
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SUPPLEMENTAL MATERIAL

A. Functional renormalization group implementation

In this section we supply additional details on the implementation of the functional renormalization group scheme, which is
conceptually equivalent to the original formulation of pf-FRG described in [1]. In principle, the FRG approach provides an exact
description of the physical model, equivalent to the functional integral formulation, and does not require any approximations.
However, on this formal level, the set of flow equations obtained in FRG is infinitely large. In order to solve this hierarchy of
coupled differential equations, one has to make a truncation and keep only a finite number of flow equations. In our calculations
we consider only the flow equations for the single-particle and two-particle vertices and neglect those of higher order. The
truncation is improved by the Katanin scheme [2], which was shown to be a crucial extension to the formalism in order to
capture spin liquid phases [1, 3, 4]. The resulting flow equations for pseudofermions that this work is based on are given in the
appendix of Ref. [1].

The structure of the flow equations is such that it contains summations over the entire real-space lattice. To compute these
sums numerically, one has to constrain them to a finite system size. While conventional numerical methods typically operate on
finite real-space lattices with open or periodic boundary conditions, the pf-FRG scheme naturally uses a different notion of finite
size. In pf-FRG calculations the central objects are fermionic interaction vertices. It is therefore straight-forward to include only
interactions between fermions that are up to L lattice bonds apart and neglect interactions of fermions further afar. This sets a
finite-size scale L but it is does not introduce artificial boundaries. Finite-size effects still exist but they become small already
for moderate system sizes. Convergence is reached already at L ≈ 10 (Fig. 1). Particularly for spin spiral configurations the
absence of an artificial boundary greatly improves the simulation. Since the lattice formally does not have a boundary it does
not put a limit on the momentum-space resolution of the Brillouin zone and spin spirals can be captured for arbitrary ~q-vectors.

FIG. 1. Finite size effects. J1-J2 Heisenberg model at J2/|J1| = 0.73 at different spin lengths S and system sizes L.

A different class of numerical artifacts may also appear in the frequency discretization. At zero temperature where Matsubara
frequencies become continuous one has to artificially discretize the frequency space for numerical calculations. The frequency
discretization leads to small oscillations in the susceptibility flow (c.f. Fig. 1) that become weaker as the number of discrete
frequencies is increased. To reduce the oscillations we linearly interpolate interaction vertices in frequency space and choose
sufficiently many logarithmically spaced frequencies that a physical flow breakdown is not concealed by oscillations. With these
modifications the numerical solution of the flow equations is straight-forward. The flow equations are sufficiently smooth that
the Euler scheme produces stable results at reasonable computational costs.
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B. Spin-S consistency checks

Large-S generalization.– The generalization of pf-FRG flow equations to larger spins S ≥ 1 is constructed by a substitution of
the spin operators by artificial moments Si =

∑2S
κ=1 Siκ as discussed in detail in Ref. [5]. To ensure projection into the correct

subspace of the resulting spin algebra, all spin flavors κ must align ferromagnetically. This can be energetically enforced by
introducing an additional level repulsion term into the Hamiltonian (1) of the main article

H′ = H+A
∑
i

(
2S∑
κ=1

Siκ

)2

(1)

and choosing A < 0. The same level repulsion term also guarantees single occupation of Abrikosov fermions, even for spin-1/2
systems.

Numerical data for varying strength of level repulsion A < 0 are shown in Fig. 2. Note that the depicted susceptibility flows
remain largely invariant upon introducing a small, finite level repulsion. This indicates that the fermion filling constraints are
readily fulfilled in pf-FRG calculations even in the absence of the level repulsion and the spin-S generalization does indeed hold.

FIG. 2. Level repulsion term in spin-S calculations. J1-J2 Heisenberg model at J2/|J1| = 0.73 with finite level repulsion A < 0. The data
has been rescaled to a common energy scale by a factor of 2S

√
J2
1 + J2

2 + A2 such that all data sets coalesce to a single curve.



3

C. Local spin anisotropy

To explore possible alternative sources of frustration, we consider a local (single-ion) spin anisotropy in addition to the Heisen-
berg interactions

H′ = H+D
∑
i

Szi S
z
i −A

∑
i

SiSi , (2)

where D > 0 parametrizes the strength of the anisotropy. Note that within the the pf-FRG scheme for spins S > 1/2, the
anisotropy term may not only drive the system into the Szi = 0 sector, but it could just as well drive the system into the unphysical
Si = 0 sector. To constrain the system to the physical sector we need to carefully counterbalance the spin anisotropy term with
a level repulsion term (see previous section). Since the spin anisotropy term can be recast as Szi S

z
i = SiSi − Sxi Sxi − S

y
i S

y
i ,

which includes a contribution of the same form as the level repulsion term, it is apparent that the strength of the level repulsion
should be at least A/D > 1.

If we first consider the single-ion limit D → ∞ we find that the in and out-of-plane susceptibilities converge in a range of
3 . A/D . 10 as shown in Fig. 3, though we note that the out-of-plane susceptibility never vanishes entirely. For large level
repulsion strength A/D & 10 the susceptibilities start to diverge indicating a breakdown of the pf-FRG framework.
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FIG. 3. Local spin anisotropy for a single ion. The susceptibility of a single spin-1 moment at zero cutoff plotted for different rations of the
anisotropy D and the counter-balancing level repulsion term A. At small level repulsion (A/D . 3) contributions from the unphysical sector
of the Hilbert space dominate as well as for very large level repulsion (A/D & 10). In between there exists a flat plateau where the system is
constrained to the physical Hilbert space.

In Figs. 4 and 5 we show the in and out-of-plane susceptibility flows for varying strengths of the local spin anisotropy both
for the original J1-J2 Heisenberg model (for J2/|J1| = 0.73) as well as the tetragonal J1-J−2 -J⊥2 model, respectively. For the
spiral spin liquid of the J1-J2 Heisenberg model we see the expected crossover to the trivial paramagnet of the large D limit at
around D/|J1| ≈ 2 in accordance with the mean-field estimates of Ref. [6]. For the tetragonal model, on the other hand, we do
not observe such a transition up to values of D/|J1| ≈ 8 as illustrated in Fig. 5.

FIG. 4. Spin anisotropy in the J1-J2 Heisenberg model at J2/|J1| = 0.73 and different values for the anisotropy D. The level repulsion
term A is chosen such that A/D = 4 for all values of D.
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FIG. 5. Spin anisotropy in the J1-J−2 -J⊥2 model with coupling constants as suggested in ab initio calculations [7] and an additional spin
anisotropy D. The level repulsion term A is chosen such that A/D = 4 for all values of D.
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D. Supplemental data

FIG. 6. Effect of quantum fluctuations for varying spin length. The spin structure factor at the lowest frequency cutoff (either zero or right
above the ordering transition) and J2/|J1| = 0.15 (top row), J2/|J1| = 0.225 (second row), J2/|J1| = 0.35 (third row) , or J2/|J1| = 1
(bottom row) with the same color coding applied as in Fig. 4 of the main article. The surface-like features reveal nearly degenerate spiral
manifolds akin to the spiral surfaces of the ground state of the classical spin model [8] (indicated by the grey shaded spheres in the top and the
second row). Incipient magnetic order for most spin length S is well described by singular points or ring-like shapes in the structure factor.
The spin-3/2 system for J2/|J1| = 0.15 (top row) stands out as the entire spherical spiral surface remains degenerate down to Λ = 0. Such a
degenerate regime upon entering the spin spiral phase, has also been reported in earlier Sp(N) calculations [9].
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FIG. 7. Flow of the spin susceptibility for various coupling strengths J2/|J1| (columns) and varying S (rows). Shown here is the maximum
of the susceptibility versus frequency cutoff Λ for the exchange model (1) of the main article with S=1 (top row), S=3/2 (middle row), and
S=5/2 (bottom row).
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